skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation
Abstract Electrochemical research often requires stringent combinations of experimental parameters that are demanding to manually locate. Recent advances in automated instrumentation and machine-learning algorithms unlock the possibility for accelerated studies of electrochemical fundamentals via high-throughput, online decision-making. Here we report an autonomous electrochemical platform that implements an adaptive, closed-loop workflow for mechanistic investigation of molecular electrochemistry. As a proof-of-concept, this platform autonomously identifies and investigates anECmechanism, an interfacial electron transfer (Estep) followed by a solution reaction (Cstep), for cobalt tetraphenylporphyrin exposed to a library of organohalide electrophiles. The generally applicable workflow accurately discerns theECmechanism’s presence amid negative controls and outliers, adaptively designs desired experimental conditions, and quantitatively extracts kinetic information of theCstep spanning over 7 orders of magnitude, from which mechanistic insights into oxidative addition pathways are gained. This work opens opportunities for autonomous mechanistic discoveries in self-driving electrochemistry laboratories without manual intervention.  more » « less
Award ID(s):
2002158 2247426
PAR ID:
10501372
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Portfolio, Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Su, Xin (Ed.)
    Abstract Electrochemistry represents unique approaches for the promotion and mechanistic study of chemical reactions and has garnered increasing attention in different areas of chemistry. This expansion necessitates the enhancement of the traditional electrochemical cells that are intrinsically constrained by mass transport limitations. Herein, we present an approach for designing an electrochemical cell by limiting the reaction chamber to a thin layer of solution, comparable to the thickness of the diffusion layer. This thin layer electrode (TLE) provides a modular platform to bypass the constraints of traditional electrolysis cells and perform electrolysis reactions in the timescale of electroanalytical techniques. The utility of the TLE for electrosynthetic applications benchmarked using NHPI‐mediated electrochemical C−H functionalization. The application of microscale electrolysis for the study of drug metabolites was showcased by elucidating the oxidation pathways of the paracetamol drug. Moreover, hosting a microelectrode in the TLE, was shown to enable real‐time probing of the profiles of redox‐active components of these rapid electrosynthesis reactions. 
    more » « less
  2. null (Ed.)
    Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N -cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N -cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS. 
    more » « less
  3. Abstract In situ monitoring of short‐lived transition states (TSs) is crucial for understanding electrochemical reaction mechanisms but remains challenging. Conventional electrochemical surface‐enhanced Raman spectroscopy (EC‐SERS) primarily provides vibrational information, with limitations in hotspot reproducibility and often overlooking electronic information associated with TSs. This study introduces a dual‐channel EC‐SERS strategy using nanolaminate nano‐optoelectrode (NLNOE) devices, integrating plasmon‐enhanced vibrational Raman scattering (PE‐VRS) and plasmon‐enhanced electronic Raman scattering (PE‐ERS) to concurrently probe TS dynamics within electrically connected plasmonic nanocavities. Using theAgCl(s) +e⇌Ag(s) +Cl(aq) redox system, this approach distinct PE‐VRS and PE‐ERS signatures of the (AgCl)*TS. Notably, a significant increase in PE‐ERS signals concurrent with (AgCl)*TS emergence, characterized by filled bonding and unoccupied antibonding orbitals with negligible energy gaps. This enhanced PE‐ERS signal correlates with increased (AgCl)*TS polarizability, leading to amplified PE‐VRS signals due to enhanced electron cloud distortion. By modulating Cl⁻ ion concentrations via electrolyte composition (1× PBS and 1× PBS‐equivalent KH₂PO₄) while maintaining constant total ion concentration, the competition between Ag/AgCl and Ag/AgH₂PO₄ redox reactions within Ag nanolayers is influenced. These results demonstrate the capability of dual‐channel EC‐SERS to distinguish interfacial redox reactions based on distinct electronic and vibrational signatures associated with covalent and ionic bond characteristics. 
    more » « less
  4. Abstract The electrochemical detection of two pharmaceuticals, diclofenac (DCF) and carbamazepine (CBZ), was investigated as an oxidation current using boron‐doped nanocrystalline diamond (BDD) thin‐film electrodes. Both voltammetry and flow injection analysis with amperometric detection (FIA‐EC) were used to measure the drugs in standard solutions and a urine simulant. The oxidation potential for DCF wasca. 0.7 V vs. Ag/AgCl (3 M KCl) in 0.1 M phosphate buffer (pH 7.2) and wasca. 1.2 V for CBZ in 0.1 M perchloric acid. The DCF oxidation reaction was diffusion controlled at the detection potential with evidence of some surface fouling by reaction products. The CBZ oxidation reaction was also controlled by diffusion at the detection potential, but with no surface fouling. The voltammetric peak currents for both drugs increased linearly with the concentration in the micromolar range (r2≥0.994). FIA‐EC analysis of DCF and CBZ revealed a linear dynamic range from at least 0.1 to 100 μM with the actual minimum concentration detectable (S/N=3) being less than the lowest concentration measured. The recovery percentage for DCF in the urine simulant ranged from 94–108% and from 97–100% for CBZ, both assessed using square wave voltammetry. FIA‐EC data revealed that the BDD electrodes offer excellent intra and inter‐electrode repeatability with an RSD for DCF and CBZ of 4.90% and 3.81%, respectively. The BDD electrode provided good reproducibility and response stability over eight days of continuous use detecting both DCF and CBZ. Overall, BDD electrodes are a viable material  for the sensitive, selective, and reproducible electrochemical detection of these two pharmaceuticals. 
    more » « less
  5. Abstract Semiconducting polymers are of interest due to their solution processibility and broad electronic applications. Electrochemistry allows these wide bandgap semiconductors to be converted to conducting polymers by doping such polymers at various potentials. When polymers arep‐doped to improve their conductivity via electrochemical oxidation, various positively‐charged carriers are created, including polarons (singly‐charged) and bipolarons (doubly‐charged). Carrier creation is accompanied by anion intercalation from the electrolyte for charge balance, and this insertion requires ion mobility. In this work, poly(3‐hexylthiophene) (P3HT) with different regioregularities is used to understand the relationship between solvent swelling, which affects anion intercalation, and electrochemical doping. Cyclic voltammetry, optical absorption spectroscopy, and grazing incidence wide‐angle X‐ray scattering (GIWAXS) measurements are used to correlate the doping level with structural changes. In situ electrochemical quartz crystal microbalance (EQCM) measurements are used to quantify the swelling of the polymers dynamically during electrochemical cycling. Lastly, in situ conductivity measurements are done to measure the effect of swelling on the ionic and electronic conductivity. The results indicate that solvent swelling is required for bipolaron formation, and that swelling facilitates both the small structural changes need for polaron formation and the disordering required for bipolaron formation. 
    more » « less