In recent decades, recruitment of young-of-year lobsters to benthic nursery habitats in the Gulf of Maine was regionally synchronized and exhibited correlative links with changes in the abundance of the copepod Calanus finmarchicus, a foundational zooplankton species of the pelagic food web. The spatial scale at which recruitment dynamics were correlated indicated that recruitment processes were not as strongly coupled to trends in spawner abundance as might be expected, but, rather, were influenced by common, ecosystem-scale processes. Here we explored how local- and basin-scale zooplankton dynamics and oceanographic indicators in the Gulf of Maine correlated with lobster settlement indices and each other since the late 1980s. Our analysis indicates that lobster settlement trends in southwestern Gulf of Maine study areas, from Midcoast Maine to Cape Cod Bay, tend to be significantly correlated with basin-wide C. finmarchicus dynamics and the composition of waters entering the Gulf of Maine through the Northeast Channel. In contrast, lobster settlement in the northeastern Gulf, from Penobscot Bay to the Bay of Fundy, tended to correlate more strongly to C. finmarchicus variability in the Bay of Fundy region, which was distinct in earlier years but converged with the broader basin-scale processes in the latter years. Our results are consistent with the hypothesis that the combined effect of climate-related declines in abundance and phenological shifts of C. finmarchicus have contributed to declines in lobster settlement over the past decade, and justify further research into the mechanisms of this interaction. These changes also align with the weakening influence of cold Labrador Slope Water and strengthening effects of warm Gulf Stream waters that precipitated an ecosystem-wide regime shift in the Gulf of Maine over the past decade and may have greater implications for lobster recruitment than previously suspected.
more »
« less
Multidecadal molecular isotope records of pelagic plankton bioarchives and deep-sea corals indicated strong pelagic-benthic coupling through microbial pathways in the Gulf of Maine
Pelagic-benthic coupling provides essential ecosystem functions, including energy transfer in surface and deep ocean food webs, regulation of biogeochemical cycling, and climate feed-back mechanisms. Despite its importance, access to long-term data sets of export production through different food web pathways are scarce. Therefore, to fill a critical data gap in our understanding of the patterns and drivers of variation in export production on ecologically relevant time scales, this study applied compound-specific stable nitrogen isotope analysis of amino acids to a 38 year (1981-2019) time series of pelagic copepod bioarchives (large-bodied Calanus finmarchicus and small-bodied Centropages typicus) and deep ocean bioarchives (deep-sea coral Primnoa resedaeformis) in the Gulf of Maine. Key metrics of food web dynamics that regulate export production were calculated including water nitrogen source, degree of heterotrophic microbial reworking on organic matter (∑V), and relative contribution to the trophic position of metazoan (TPGlx-Phe) and microbial (TPAla-Phe), all of which revealed strong pelagic-benthic coupling in both magnitude and temporal trend. As hypothesized, there was particularly strong agreement across all metrics between large-bodied C. finmarchicus and deep-sea P. resedaeformis, including a steady increase in the heterotrophic microbial reworking of exported production over time. The strong reliance of C. finmarchicus on microbial loop processes, including elevated TPAla-Phe transfers (4+/- 0.3) and a high level of ∑V (2.0 ± 0.5), was mirrored in P. resedaeformis, creating a direct mechanism to link surface microbial loop food web dynamics to the deep ocean through the biological pump. Identifying this strong microbial loop connectivity between the pelagic and benthic systems improves our understanding of Gulf of Maine export dynamics and our ability to better parameterize new mechanistic General Ecosystem Models.
more »
« less
- Award ID(s):
- 2049307
- PAR ID:
- 10501400
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Ocean Sciences Meeting
- Format(s):
- Medium: X
- Location:
- New Orleans, LA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We build on previous research describing correlative links between changes in the abundance of the copepod Calanus finmarchicus, a foundational zooplankton species of the pelagic food web, and diminishing recruitment of young-of-year American lobster (Homarus americanus) to benthic nurseries in the Gulf of Maine. Using parallel 31-year time series of lobster larvae and zooplankton collected on the New Hampshire coast between 1988 and 2018, we investigated how changes in phenology of stage I larval lobster and their putative copepod prey, C. finmarchicus, affect their temporal overlap and potential to interact during the larval season. We found that over the time series both the lobster egg hatch and first appearance of larvae began earlier in the season, a trend significantly correlated with ocean warming. The last appearance of larvae in late summer has been delayed, however, thereby extending the larval season. Even with the longer larval lobster season, the C. finmarchicus season has increasingly been ending before the peak abundance of stage I lobster larvae. The net effect is a widening mismatch in phenology of the two species, an outcome consistent with the hypothesis that changes in abundance and phenology of C. finmarchicus have contributed to recent declines in lobster recruitment.more » « less
-
Woodson, Brock (Ed.)Abstract The lipid-rich calanoid copepod, Calanus finmarchicus, plays a critical role in the Gulf of Maine pelagic food web. Despite numerous studies over the last several decades, a clear picture of variability patterns and links with key environmental drivers remains elusive. This study applies model-based scaling and sensitivity analyses to a regional plankton dataset collected over the last four decades (1977–2017). The focus is to describe the gulf-wide spatio-temporal patterns across three major basins, and to assess the relative roles of internal population dynamics and external exchanges. For the spring stock, there is strong synchrony of interannual variability among three basins. This variability is largely driven by internal population dynamics rather than external exchanges, and the internal population dynamics are more sensitive to the change of top-down mortality regime than the bottom-up forcings. For the fall stock, the synchrony among basins weakens, and the variability is influenced by both internal mortality and external dilution loss. There appears to be no direct connection between the spring stock with either the preceding or subsequent fall stock, suggesting seasonal or sub-seasonal scales of population variability and associated drivers. The results highlight seasonally varying drivers responsible for population variability, including previously less recognized top-down control.more » « less
-
null (Ed.)Abstract We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by the microbial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspension-feeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (~4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish.more » « less
-
Abstract A quantitative understanding of the mesopelagic zooplankton food web is key to development of accurate carbon budgets and geochemical models in marine systems. Here we use compound specific nitrogen stable isotope analysis of amino acids to quantify the trophic structure of the microzooplankton and mesozooplankton community during summer in the subarctic northeast Pacific Ocean during the EXport Processes in the Ocean from Remote Sensing (EXPORTS) field campaign. Source amino acid values in particles and zooplankton provide strong evidence that basal resources for the mesopelagic zooplankton food web were primarily small (), suspended or slow‐sinking particles, but that surface organic matter delivered by vertically migrating zooplankton may have also been important. Comparisons of values of source and trophic amino acids provide estimates of food web length, which decrease significantly with depth and suggest that protistan microzooplankton are key components of the food web from the surface to at least 500. These results emphasize the importance of small particles as a source of carbon and nitrogen to mesopelagic communities in this region, support observations of an inverse relationship between zooplankton vertical migration and small particles as sources of carbon to deep‐sea food webs in low productivity environments, and document the role of heterotrophic protists as key trophic intermediaries in the mesopelagic zone at this location.more » « less