skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-precision Aftershock Locations and Fault Planes of the 2016-2017 Central Italy Sequence
The earthquake catalog includes high-precision hypocenter relocations for 390,334 earthquakes recorded during the 2016-2017 Amatrice (Central Italy)  earthquake sequence. The relative locations were computed by double-difference inversion of a  combination of INGV phase picks and cross-correlation differential  times measured from correlated seismograms with correlation coefficients > 0.7. Planes of normal faults (idx=1-5) are derived from PCA analysis of 2 months of aftershock  locations in the CAT4 catalog following large events. Surfaces of detachment faults (idx=7-10) are derived from mapping out the location of correlated earthquakes.  Citation: Waldhauser, F., Michele, M., Chiaraluce, L., Di Stefano, R., & Schaff, D. P. (2021). Fault planes, fault zone structure and detachment fragmentation resolved with highprecision aftershock locations of the 2016-2017 central Italy sequence. Geophysical Research Letters, 48, e2021GL092918. https://doi.org/10.1029/2021GL092918  more » « less
Award ID(s):
1759782
PAR ID:
10501593
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
High-precision earthquake catalog, fault planes, central Italy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 2016–2017 central Italy seismic sequence occurred on an 80 km long normal-fault system. The sequence initiated with the Mw 6.0 Amatrice event on 24 August 2016, followed by the Mw 5.9 Visso event on 26 October and the Mw 6.5 Norcia event on 30 October. We analyze continuous data from a dense network of 139 seismic stations to build a high-precision catalog of ∼900,000 earthquakes spanning a 1 yr period, based on arrival times derived using a deep-neural-network-based picker. Our catalog contains an order of magnitude more events than the catalog routinely produced by the local earthquake monitoring agency. Aftershock activity reveals the geometry of complex fault structures activated during the earthquake sequence and provides additional insights into the potential factors controlling the development of the largest events. Activated fault structures in the northern and southern regions appear complementary to faults activated during the 1997 Colfiorito and 2009 L’Aquila sequences, suggesting that earthquake triggering primarily occurs on critically stressed faults. Delineated major fault zones are relatively thick compared to estimated earthquake location uncertainties, and a large number of kilometer-long faults and diffuse seismicity were activated during the sequence. These properties might be related to fault age, roughness, and the complexity of inherited structures. The rich details resolvable in this catalog will facilitate continued investigation of this energetic and well-recorded earthquake sequence. 
    more » « less
  2. Abstract Three devastating earthquakes ofMW ≥ 5.9 activated a complex system of high‐angle normal, antithetic, and sub‐horizontal detachment faults during the 2016–2017 central Italy seismic sequence. Waveform cross‐correlation based double‐difference location of nearly 400,000 aftershocks illuminate complex, fine‐scale structures of interacting fault zones. The Mt. Vettore–Mt. Bove (VB) normal fault exhibits wide and complex damage zones, including a system of bookshelf faults that intersects the detachment zone. In the Laga domain, a comparatively narrow, shallow dipping segment of the deep Mt. Gorzano fault progressively ruptures through the detachment zone in four subsequentMW∼ 5.4 events. Reconstructed fault planes show that the detachment zone is fragmented in four sub‐horizontal, partly overlaying shear planes that correlated with the extent of the mainshock ruptures. We find a new, deep reaching seismic barrier that coincides with a bend in the VB fault and may play a role in controlling rupture evolution. 
    more » « less
  3. Abstract We investigate spatiotemporal changes of intermediate‐depth earthquakes in the double seismic zone beneath Central and Northeastern Japan before and after the 2011 magnitude 9 Tohoku earthquake. We build a template‐matching catalog 1 year before and 1 year after the Tohoku earthquake using Hi‐net recordings. The new catalog has a six‐fold increase in earthquakes compared to the Japan Meteorological Agency catalog. Our results show no significant change in the intermediate‐depth earthquake rate prior to the Tohoku earthquake, but a clear increase in both planes following the Tohoku earthquake. The regions with increased intermediate‐depth earthquake activity and the post‐seismic slips following the Tohoku earthquake are spatially separate and complementary with each other. Aftershock productivity of intermediate‐depth earthquakes increased in both planes following the Tohoku earthquake. Overall, aftershock productivity of the upper plane is higher than the lower plane, likely indicating that stress environments and physical mechanisms of intermediate‐depth earthquakes in the two planes are distinct. 
    more » « less
  4. Abstract The protracted nature of the 2016-2017 central Italy seismic sequence, with multiple damaging earthquakes spaced over months, presented serious challenges for the duty seismologists and emergency managers as they assimilated the growing sequence to advise the local population. Uncertainty concerning where and when it was safe to occupy vulnerable structures highlighted the need for timely delivery of scientifically based understanding of the evolving hazard and risk. Seismic hazard assessment during complex sequences depends critically on up-to-date earthquake catalogues—i.e., data on locations, magnitudes, and activity of earthquakes—to characterize the ongoing seismicity and fuel earthquake forecasting models. Here we document six earthquake catalogues of this sequence that were developed using a variety of methods. The catalogues possess different levels of resolution and completeness resulting from progressive enhancements in the data availability, detection sensitivity, and hypocentral location accuracy. The catalogues range from real-time to advanced machine-learning procedures and highlight both the promises as well as the challenges of implementing advanced workflows in an operational environment. 
    more » « less
  5. Abstract Strain partitioning in oblique convergent margins results in margin‐parallel shear in the overriding plate. Margin‐parallel shear is often accommodated by margin‐parallel strike‐slip faults proximal to active volcanic arcs. Along the Nicaraguan segment of the Central American Forearc (CAFA) in the Cocos‐Caribbean plate convergent margin, there are no well‐expressed right‐lateral faults that accommodate CA‐CAFA relative motion. Instead, historical earthquakes and mapped fault orientations indicate that the ∼12 mm/yr of dextral motion is accommodated on arc‐normal, left‐lateral faults (i.e., bookshelf faults). We investigate three upper‐plate earthquakes; the 10 April 2014 (Mw6.1), 15 September 2016 (Mw5.7), and 28 September 2016 (Mw5.5), using Global Position System co‐seismic displacements and relocated earthquake aftershocks. Our analyses of the three earthquakes indicate that the 10 April 2014 earthquake ruptured an unmapped margin‐parallel right‐lateral fault in Lago Xolotlán (Managua) and the September 2016 earthquakes ruptured arc‐normal, left‐lateral and oblique‐slip faults. These earthquakes represent a triggered sequence whereby the 10 April 2014 earthquake promoted failure of the faults that ruptured in September 2016 by imparting a static Coulomb stress change (ΔCFS) of 0.02–0.07 MPa. Likewise, the 15 September 2016, earthquake additionally promoted failure (ΔCFS of 0.08–0.1 MPa) on sub‐parallel faults that ruptured in two subsequent earthquakes. We also present an instance of magma‐tectonic interaction whereby the 10 April 2014 earthquake dilated (10s of μStrain) the shallow magmatic system of Momotombo Volcano, which led to magma injection, ascent, and eruption on 1 December 2015, after ∼100 years of quiescence. 
    more » « less