Computational materials discovery efforts are enabled by large databases of properties derived from high-throughput density functional theory (DFT), which now contain millions of calculations at the generalized gradient approximation (GGA) level of theory. It is now feasible to carry out high-throughput calculations using more accurate methods, such as meta-GGA DFT; however recomputing an entire database with a higher-fidelity method would not effectively leverage the enormous investment of computational resources embodied in existing (GGA) calculations. Instead, we propose here a general procedure by which higher-fidelity, low-coverage calculations (e.g., meta-GGA calculations for selected chemical systems) can be combined with lower-fidelity, high-coverage calculations (e.g., an existing database of GGA calculations) in a robust and scalable manner. We then use legacy PBE(+
The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu–O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew–Burke–Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao–Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.
more » « less- Award ID(s):
- 2344734
- PAR ID:
- 10501605
- Publisher / Repository:
- NSF-PAR
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 160
- Issue:
- 6
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract U ) GGA calculations and new r2SCAN meta-GGA calculations from the Materials Project database to demonstrate that our scheme improves solid and aqueous phase stability predictions, and discuss practical considerations for its implementation. -
Abstract For more than three decades, nearly free-electron elemental metals have been a topic of debate because the computed bandwidths are significantly wider in the local density approximation to density-functional theory (DFT) than indicated by angle-resolved photoemission (ARPES) experiments. Here, we systematically investigate this using first principles calculations for alkali and alkaline-earth metals using DFT and various beyond-DFT methods such as meta-GGA, G0W0, hybrid functionals (YS-PBE0, B3LYP), and LDA + eDMFT. We find that the static non-local exchange, as partly included in the hybrid functionals, significantly increase the bandwidths even compared to LDA, while the G0W0bands are only slightly narrower than in LDA. The agreement with the ARPES is best when the local approximation to the self-energy is used in the LDA + eDMFT method. We infer that even moderately correlated systems with partially occupied
s orbitals, which were assumed to approximate the uniform electron gas, are very well described in terms of short-range dynamical correlations that are only local to an atom. -
Abstract Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two‐dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so‐called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles
θ t, such as twisted interfacial Josephson junctions using high‐temperature superconductors. Herein, vdW homojunctions of the thin‐magnetic flakes, Fe3GeTe2(FGT), with largeθ tranging from 0° to 90°, without inserting any tunnel barriers are assembled. Nevertheless, these vdW homojunctions exhibit tunnel‐magnetoresistance (TMR) like behavior (pseudo‐TMR (PTMR) effect) with the ratios highly sensitive to theθ tvalues, revealing that the vdW gap at the junction interface between the twisted FGT layers behaves like a tunnel barrier and theθ tserves a control parameter for PTMR by drastically varying magnitudes of the lattice‐mismatch and the subsequent appearance of antiferromagnetic (AFM) spin alignment. First‐principles calculations considering vacuum gaps indicate strong dependence of TMR on theθ tdriven by the sixfold screw rotational symmetry of bulk FGT. The present homojunctions hold promise as a platform for novel AFM spin‐dependent phenomena and spintronic applications. -
An in‐depth investigation of transition metal impurities (Hf, Zr, Nb, and W) is presented as shallow donors in monoclinic Ga2O3using first‐principles calculations within the framework of density functional theory. A combination of semilocal and hybrid functionals is used to predict their binding energies and hyperfine parameters. The generalized gradient approximation (GGA) allows performing calculations for supercells of up to 2500 atoms, enabling an extrapolation to the dilute limit. The shortcoming of GGA in correctly describing the electron localization is then overcome by the use of the hybrid functional. Results are presented and discussed in light of the application of these transition‐metal elements as shallow donors in Ga2O3and their identification in the experiment. The methodology applied here can be used in calculations for shallow donors in other systems.
-
M. Lewin, Rupert L. (Ed.)Abstract: Lieb and Oxford (1981) derived rigorous lower bounds, in the form of local functionals of the electron density, on the indirect part of the Coulomb repulsion energy. The greatest lower bound for a given electron number N depends monotonically upon N, and the N→∞ limit is a bound for all N. These bounds have been shown to apply to the exact density functionals for the exchange- and exchange-correlation energies that must be approximated for an accurate and computationally efficient description of atoms, molecules, and solids. A tight bound on the exact exchange energy has been derived therefrom for two-electron ground states, and is conjectured to apply to all spin-unpolarized electronic ground states. Some of these and other exact constraints have been used to construct two generations of non-empirical density functionals beyond the local density approximation: the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA.more » « less