Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To accurately describe the energetics of transition metal systems, density functional approximations (DFAs) must provide a balanced description of s- and d- electrons. One measure of this is the sd transfer error, which has previously been defined as . Theoretical concerns have been raised about this definition due to its evaluation of excited-state energies using ground-state DFAs. A more serious concern appears to be strong correlation in the 4s2configuration. Here, we define a ground-state measure of the sd energy imbalance, based on the errors of s- and d-electron second ionization energies of the 3d atoms, that effectively circumvents the aforementioned problems. We find an improved performance as we move from the local spin density approximation (LSDA) to the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) to the regularized and restored Strongly Constrained and Appropriately Normed (r2SCAN) meta-GGA for first-row transition metal atoms. However, we find large (∼2 eV) ground-state sd energy imbalances when applying a Perdew–Zunger 1981 self-interaction correction. This is attributed to an “energy penalty” associated with the noded 3d orbitals. A local scaling of the self-interaction correction to LSDA results in a balance of s- and d-errors.more » « lessFree, publicly-accessible full text available March 11, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase, characterized by V–V dimerized structures, to a metallic rutile (R) phase above 340 K. This transition is accompanied by a magnetic change: the M1 phase exhibits a non-magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. Simultaneous simulation of the structural, electric, and magnetic properties of this compound is of fundamental importance, but the M1 phase alone has posed a significant challenge to the density functional theory (DFT). In this study, we show none of the commonly used DFT functionals, including those combined with on-site Hubbard U to treat 3d electrons better, can accurately predict the V–V dimer length. The spin-restricted method tends to overestimate the strength of the V–V bonds, resulting in a small V–V bond length. Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of these two bond-calculation methods underscores one of the two contentious mechanisms, i.e., Peierls lattice distortion or Mott localization due to electron–electron repulsion, involved in the metal–insulator transition in VO2. To elucidate the challenges encountered in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic sites, thereby revealing the inherent difficulties linked with the DFT computations.more » « less
-
The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu–O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew–Burke–Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao–Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.more » « less
-
Because of an acquired obsession to understand as much as possible in a limited but important area of science and because of optimism, luck, and help from others, my life in science turned out to be much better than I or others could have expected or planned. This is the story of how that happened, and also the story of the groundstate density functional theory of electronic structure, told from a personal perspective.more » « less
An official website of the United States government
