skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infinite sumsets in sets with positive density
Motivated by questions asked by Erdős, we prove that any set A ⊂<#comment/> N A\subset \mathbb {N} with positive upper density contains, for any k ∈<#comment/> N k\in \mathbb {N} , a sumset B 1 + ⋯<#comment/> + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k ⊂<#comment/> N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2 more » « less
Award ID(s):
2054643
PAR ID:
10501685
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Journal of the American Mathematical Society
ISSN:
0894-0347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let K / Q p K/\mathbb {Q}_p be a finite unramified extension, ρ<#comment/> ¯<#comment/> : G a l ( Q ¯<#comment/> p / K ) →<#comment/> G L n ( F ¯<#comment/> p ) \overline {\rho }:\mathrm {Gal}(\overline {\mathbb {Q}}_p/K)\rightarrow \mathrm {GL}_n(\overline {\mathbb {F}}_p) a continuous representation, and τ<#comment/> \tau a tame inertial type of dimension n n . We explicitly determine, under mild regularity conditions on τ<#comment/> \tau , the potentially crystalline deformation ring R ρ<#comment/> ¯<#comment/> η<#comment/> , τ<#comment/> R^{\eta ,\tau }_{\overline {\rho }} in parallel Hodge–Tate weights η<#comment/> = ( n −<#comment/> 1 , ⋯<#comment/> , 1 , 0 ) \eta =(n-1,\cdots ,1,0) and inertial type τ<#comment/> \tau when theshapeof ρ<#comment/> ¯<#comment/> \overline {\rho } with respect to τ<#comment/> \tau has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150]. 
    more » « less
  2. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  3. We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting J k −<#comment/> 1 ( s ) = ∫<#comment/> 0 s t k −<#comment/> 1 e −<#comment/> t 2 2 d t J_{k-1}(s)=\int ^s_0 t^{k-1} e^{-\frac {t^2}{2}}dt and c k −<#comment/> 1 = J k −<#comment/> 1 ( + ∞<#comment/> ) c_{k-1}=J_{k-1}(+\infty ) , we conjecture that the function F : [ 0 , 1 ] →<#comment/> R F:[0,1]\rightarrow \mathbb {R} , given by F ( a ) = ∑<#comment/> k = 1 n 1 a ∈<#comment/> E k ⋅<#comment/> ( β<#comment/> k J k −<#comment/> 1 −<#comment/> 1 ( c k −<#comment/> 1 a ) + α<#comment/> k ) \begin{equation*} F(a)= \sum _{k=1}^n 1_{a\in E_k}\cdot (\beta _k J_{k-1}^{-1}(c_{k-1} a)+\alpha _k) \end{equation*} (with an appropriate choice of a decomposition [ 0 , 1 ] = ∪<#comment/> i E i [0,1]=\cup _{i} E_i and coefficients α<#comment/> i , β<#comment/> i \alpha _i, \beta _i ) satisfies, for all symmetric convex sets K K and L L , and any λ<#comment/> ∈<#comment/> [ 0 , 1 ] \lambda \in [0,1] , F ( γ<#comment/> ( λ<#comment/> K + ( 1 −<#comment/> λ<#comment/> ) L ) ) ≥<#comment/> λ<#comment/> F ( γ<#comment/> ( K ) ) + ( 1 −<#comment/> λ<#comment/> ) F ( γ<#comment/> ( L ) ) . \begin{equation*} F\left (\gamma (\lambda K+(1-\lambda )L)\right )\geq \lambda F\left (\gamma (K)\right )+(1-\lambda ) F\left (\gamma (L)\right ). \end{equation*} We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set K K , itsGaussian concavity power p s ( K , γ<#comment/> ) p_s(K,\gamma ) is greater than or equal to p s ( R B 2 k ×<#comment/> R n −<#comment/> k , γ<#comment/> ) p_s(RB^k_2\times \mathbb {R}^{n-k},\gamma ) , for some k ∈<#comment/> { 1 , …<#comment/> , n } k\in \{1,\dots ,n\} . We call the sets R B 2 k ×<#comment/> R n −<#comment/> k RB^k_2\times \mathbb {R}^{n-k} round k k -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set K K in R n \mathbb {R}^n , p s ( K , γ<#comment/> ) ≥<#comment/> sup F ∈<#comment/> L 2 ( K , γ<#comment/> ) ∩<#comment/> L i p ( K ) : ∫<#comment/> F = 1 ( 2 T γ<#comment/> F ( K ) −<#comment/> V a r ( F ) ) + 1 n −<#comment/> E X 2 , \begin{equation*} p_s(K,\gamma )\geq \sup _{F\in L^2(K,\gamma )\cap Lip(K):\,\int F=1} \left (2T_{\gamma }^F(K)-Var(F)\right )+\frac {1}{n-\mathbb {E}X^2}, \end{equation*} where T γ<#comment/> F ( K ) T_{\gamma }^F(K) is the F −<#comment/> F- torsional rigidity of K K with respect to the Gaussian measure.Moreover, the equality holds if and only if K = R B 2 k ×<#comment/> R n −<#comment/> k K=RB^k_2\times \mathbb {R}^{n-k} for some R > 0 R>0 and k = 1 , …<#comment/> , n k=1,\dots ,n .As a consequence, we get p s ( K , γ<#comment/> ) ≥<#comment/> Q ( E | X | 2 , E ‖<#comment/> X ‖<#comment/> K 4 , E ‖<#comment/> X ‖<#comment/> K 2 , r ( K ) ) , \begin{equation*} p_s(K,\gamma )\geq Q(\mathbb {E}|X|^2, \mathbb {E}\|X\|_K^4, \mathbb {E}\|X\|^2_K, r(K)), \end{equation*} where Q Q is a certain rational function of degree 2 2 , the expectation is taken with respect to the restriction of the Gaussian measure onto K K , ‖<#comment/> ⋅<#comment/> ‖<#comment/> K \|\cdot \|_K is the Minkowski functional of K K , and r ( K ) r(K) is the in-radius of K K . The result follows via a combination of some novel estimates, the L 2 L2 method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185;Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function F F whose composition with γ<#comment/> ( K ) \gamma (K) is concave in the Minkowski sense for all symmetric convex sets. 
    more » « less
  4. We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of the K ( 1 ) K(1) -local sphere S K ( 1 ) \mathbb {S}_{K(1)} at the prime 2 2 , in particular realizing the non- 2 2 -adic rational element 1 + ε<#comment/> ∈<#comment/> π<#comment/> 0 S K ( 1 ) 1+\varepsilon \in \pi _0\mathbb {S}_{K(1)} as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations in π<#comment/> 0 S K ( 1 ) \pi _0\mathbb {S}_{K(1)}
    more » « less
  5. We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p})
    more » « less