skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on April 1, 2025

Title: Investigating wave shape effect on sediment transport over migrating ripples using an eulerian two-phase model
A Reynolds-averaged two-phase Eulerian model for sediment transport, SedFoam, is utilized in a twodimensional domain for a given sediment grain size, flow period, and mobility number to study the asymmetric and skewed flow effects on the sediment transport over coarse-sand migrating ripples. First, the model is validated with a full-scale water tunnel experiment of orbital ripple driven by acceleration skewed (asymmetric) oscillatory flow with good agreement in the flow velocity, net sediment transport, and ripple migration rate. The model results showed that the asymmetric flow causes a net onshore sediment transport of both suspended and near-bed load (the conventional bed load and part of the near-bed suspended load, responsible for ripple migration). The suspended load transport is driven by the “positive phase-lag” effect, while the near-bed transport is due to the large erosion of the boundary layer on the stoss flank, sediment avalanching on the lee flank, and the returning flux induced by the stoss vortex. Together, these processes result in a net onshore transport rate. In contrast, for an energetic velocity skewed (skewed) flow, the net transport rate is offshore directed. This is due to a larger offshore-directed suspended load transport rate, resulting from the “negative phase-lag” effect, compared to the onshore-directed near-bed load transport rate. Compared to the asymmetric flow, the onshore near-bed load transport (and migration) rate is limited by the larger offshore directed flux associated with returning flow on the lee side, due to a stronger lee vortex generation during the onshore flow half-cycle. In the combined asymmetric-skewed case, the near-bed load and migration rate are higher than in the asymmetric flow case. Moreover, the offshore-directed suspended load is much smaller compared to the skewed flow case due to a competition between the negative (due to velocity skewness) and positive (due to acceleration skewness) phase-lag effects. As a result, the net transport rate is onshore directed but slightly smaller than the asymmetric flow case.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Coastal Engineering
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A new modeling methodology for ripple dynamics driven by oscillatory flows using a Eulerian two‐phase flow approach is presented in order to bridge the research gap between near‐bed sediment transport via ripple migration and suspended load transport dictated by ripple induced vortices. Reynolds‐averaged Eulerian two‐phase equations for fluid phase and sediment phase are solved in a two‐dimensional vertical domain with akεclosure for flow turbulence and particle stresses closures for short‐lived collision and enduring contact. The model can resolve full profiles of sediment transport without making conventional near‐bed load and suspended load assumptions. The model is validated with an oscillating tunnel experiment of orbital ripple driven by a Stokes second‐order (onshore velocity skewed) oscillatory flow with a good agreement in the flow velocity and sediment concentration. Although the suspended sediment concentration far from the ripple in the dilute region was underpredicted by the present model, the model predicts an onshore ripple migration rate that is in very good agreement with the measured value. Another orbital ripple case driven by symmetric sinusoidal oscillatory flow is also conducted to contrast the effect of velocity skewness. The model is able to capture a net offshore‐directed suspended load transport flux due to the asymmetric primary vortex consistent with laboratory observation. More importantly, the model can resolve the asymmetry of onshore‐directed near‐bed sediment flux associated with more intense boundary layer flow speed‐up during onshore flow cycle and sediment avalanching near the lee ripple flank which force the onshore ripple migration.

    more » « less
  2. Abstract

    A large‐scale laboratory experiment was conducted to evaluate cross‐shore sediment transport and bed response on a sandbar under erosive and accretive field‐scale wave conditions (total of 11 cases). Unprecedented vertical resolution of sediment concentration was achieved through the use of conductivity concentration profilers alongside miniature fiber optic backscatter profilers. Observations were made of intrawave (phase‐averaged) and wave‐averaged cross‐shore sediment flux profiles and transport rates in the lower half of the water column on the crest of a sandbar. The net sediment transport rate was partitioned into suspended sediment (SS) and bed load (BL) components to quantify the relative contributions of SS and BL to the total sediment transport rate. Net SS transport rates were greater than net BL transport rates for the positive (wave crest) half‐cycle in 6 of 11 cases, compared to 100% (11 of 11) for the negative (wave trough) half‐cycle. Net (wave‐averaged) BL transport rates were greater, in magnitude, than net SS transport rates for 7 of the 11 cases. The dominant mode of transport was determined from the ratio of net BL to net SS transport rate magnitudes. The net transport rate was negative (offshore‐directed) when SS dominated and positive (onshore‐directed) when BL dominated. Net BL transport rate correlated well with third moments of free‐stream velocity (r2 = 0.72), suggesting that energetics‐type quasi‐steady formulae may be suitable for predicting BL transport under the range of test conditions.

    more » « less
  3. Abstract

    Entrainment and suspension of sediment particles with the size distribution similar to a range of natural sands were simulated with a focus on the vertical size sorting and transport dynamics in response to different wave conditions. The simulations were performed using a two‐phase Eulerian‐Lagrangian model by combining the LIGGGHTS discrete element method solver for sediment and SedFoam solver for the fluid phase. The model was first validated for a range of sand grain sizes from 0.21 to 0.97 mm having well‐sorted and mixed (bimodal) size distributions using laboratory oscillatory flow data. Three sediment bed configurations were studied under a wide range of velocity‐skewed waves with different wave intensity and skewness. It was found that the bimodal distribution having only 30% of coarse fraction and 70% of medium fraction responds similar to a well‐sorted coarse sand configuration. Sediment fluxes of the bimodal distribution were slightly higher than those of well‐sorted coarse sand because of the pronounced inverse grading in the bimodal distribution. Furthermore, for the bimodal distribution the medium fraction acted as a relatively smooth foundation underneath the coarse fraction which facilitated the mobilization of the coarser particles. Under high energy wave conditions, the smoothing feature was exacerbated and further caused the formation of plug flow where a thick layer of intense sediment flux was observed. Model results also showed that under high skewness waves, phase‐lag effect occurred in well‐sorted medium sand which caused lower net onshore sediment transport rates but the effect was significantly reduced for mixed sediments.

    more » « less
  4. Abstract

    During a storm, as the beach profile is impacted by increased wave forcing and rapidly changing water levels, sand berms may help mitigate erosion of the backshore. However, the mechanics of berm morphodynamics have not been fully described. In this study, 26 trials were conducted in a large wave flume to explore the response of a near‐prototype berm to scaled storm conditions. Sensors were used to quantify hydrodynamics, sheet flow dynamics, and berm evolution. Results indicate that berm overtopping and offshore sediment transport were key processes causing berm erosion. During the morphological evolution of the beach profile, two sand bars were formed offshore that attenuated subsequent wave energy. The landward extent of that energy was confined to the seaward foreshore, inhibiting inundation of the backshore. Net offshore‐directed transport was dominant when infragravity motions increased in the swash zone. Conversely, the influence of incident‐band motions on sediment transport was relatively greater in the inner‐surf zone. Near‐bed flow velocities and sheet flow layer thicknesses were larger in the swash zone than in the inner‐surf zone. This paper also provides a valuable analysis between morphology‐estimated total sediment transport rates and rates derived from in situ measurements. Sheet flow dynamics dominated foreshore cross‐shore sediment processes, constituting the largest portion of the total sediment transport load throughout the berm erosion.

    more » « less
  5. Abstract

    The evolution of ripple geometries and their equilibrium states due to different wave forcing parameters are investigated by a Reynolds‐averaged two‐phase model, SedFoam, in a two‐dimensional domain. Modeled ripple geometries, for a given uniform grain diameter, show a good agreement with ripple predictors that include the wave period effect explicitly, in addition to the wave orbital excursion length (or wave orbital velocity amplitude). Furthermore, using a series of numerical experiments, the ripple's response to a step‐change in the wave forcing is studied. The model is capable of simulating “splitting,” “sliding,” “merging,” and “protruding” as the ripples evolve to a new equilibrium state. The model can also simulate the transition to sheet flow in energetic wave conditions and ripple reformation from a nearly flat bed condition. Simulation results reveal that the equilibrium state is such that the “primary” vortices reach half of the ripple length. Furthermore, an analysis of the suspended load and near‐bed load ratio in the equilibrium state indicates that in the orbital ripple regime, the near‐bed load is dominant while the suspended load is conducive to the ripple decaying regime (suborbital ripples) and sheet flow condition.

    more » « less