Abstract Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.e., mammals), whereas hotspots in species lacking PRDM9 are concentrated in functional regions and have greater stability over time (i.e., birds). Snakes possess PRDM9, yet virtually nothing is known about snake recombination. Here, we examine the recombination landscape and test hypotheses about the roles of PRDM9 in rattlesnakes. We find substantial variation in recombination rate within and among snake chromosomes, and positive correlations between recombination rate and gene density, GC content, and genetic diversity. Like mammals, snakes appear to have a functional and active PRDM9, but rather than being directed away from genes, snake hotspots are concentrated in promoters and functional regions—a pattern previously associated only with species that lack a functional PRDM9. Snakes therefore provide a unique example of recombination landscapes in which PRDM9 is functional, yet recombination hotspots are associated with functional genic regions—a combination of features that defy existing paradigms for recombination landscapes in vertebrates. Our findings also provide evidence that high recombination rates are a shared feature of vertebrate microchromosomes. Our results challenge previous assumptions about the adaptive role of PRDM9 and highlight the diversity of recombination landscape features among vertebrate lineages.
more »
« less
Functional diversity of snake locomotor behaviors: A review of the biological literature for bioinspiration
Abstract Organismal solutions to natural challenges can spark creative engineering applications. However, most engineers are not experts in organismal biology, creating a potential barrier to maximally effective bioinspired design. In this review, we aim to reduce that barrier with respect to a group of organisms that hold particular promise for a variety of applications: snakes. Representing >10% of tetrapod vertebrates, snakes inhabit nearly every imaginable terrestrial environment, moving with ease under many conditions that would thwart other animals. To do so, they employ over a dozen different types of locomotion (perhaps well over). Lacking limbs, they have evolved axial musculoskeletal features that enable their vast functional diversity, which can vary across species. Different species also have various skin features that provide numerous functional benefits, including frictional anisotropy or isotropy (as their locomotor habits demand), waterproofing, dirt shedding, antimicrobial properties, structural colors, and wear resistance. Snakes clearly have much to offer to the fields of robotics and materials science. We aim for this review to increase knowledge of snake functional diversity by facilitating access to the relevant literature.
more »
« less
- PAR ID:
- 10501830
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Annals of the New York Academy of Sciences
- Volume:
- 1533
- Issue:
- 1
- ISSN:
- 0077-8923
- Page Range / eLocation ID:
- 16 to 37
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Homalopsids (Old World Mud Snakes) include 59 semiaquatic species in Asia and Australasia that display an array of morphological adaptations, behaviors, and microhabitat preferences. These attributes make homalopsids an ideal model system for broader questions in evolutionary biology, but the diversity of this understudied group of snakes is still being described. Recognized species diversity in rice paddy snakes (Hypsiscopus) has recently doubled after nearly 200 years of taxonomic stability. However, the evolutionary distinctiveness of some populations remains in question. In this study, we compare mainland Southeast Asian populations of Hypsiscopus east and west of the Red River Basin in Vietnam, a known biogeographic barrier in Asia, using an iterative approach with molecular phylogenetic reconstruction, machine-learning morphological quantitative statistics, and ecological niche modeling. Our analyses show that populations west of the Red River Basin represent an independent evolutionary lineage that is distinct in genetics, morphospace, and habitat suitability, and so warrants species recognition. The holotype of H. wettsteini, a species originally described in error from Costa Rica, grouped morphometrically with the population at the Red River Basin and eastward, and those west of the Red River Basin are referred to the recently described H. murphyi. The two species may have diversified due to a variety of geological and environmental factors, and their recognition exemplifies the importance of multifaceted approaches in taxonomy for downstream biogeographic studies on speciation scenarios.more » « less
-
Abstract Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several‐fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift‐barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population‐genetic analysis and raises challenges for future applications in these areas.more » « less
-
ABSTRACT Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function.Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFunis built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.more » « less
-
Abstract This review summarizes the role of environmental factors on amphibian microbiotas at the organismal, population, community, ecosystem, and biosphere levels. At the organismal-level, tissue source, disease status, and experimental manipulations were the strongest predictors of variation in amphibian microbiotas. At the population-level, habitat quality, disease status, and ancestry were commonly documented as drivers of microbiota turnover. At the community-level, studies focused on how species’ niche influence microbiota structure and function. At the ecosystem-level, abiotic and biotic reservoirs were important contributors to microbiota structure. At the biosphere-level, databases, sample banks, and seminatural experiments were commonly used to describe microbiota assembly mechanisms among temperate and tropical amphibians. Collectively, our review demonstrates that environmental factors can influence microbiotas through diverse mechanisms at all biological scales. Importantly, while environmental mechanisms occurring at each of the different scales can interact to shape microbiotas, the past 10 years of research have mostly been characterized by targeted approaches at individual scales. Looking forward, efforts considering how environmental factors at multiple organizational levels interact to shape microbiota diversity and function are paramount. Generating opportunities for meaningful cross-disciplinary interactions and supporting infrastructure for research that spans biological scales are imperative to addressing this gap.more » « less
An official website of the United States government

