skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Juvenile Albacore tuna ( Thunnus alalunga ) foraging ecology varies with environmental conditions in the California Current Large Marine Ecosystem
Abstract Juvenile North Pacific Albacore tuna (Thunnus alalunga) support commercial and recreational fisheries in the California Current Large Marine Ecosystem (CCLME), where they forage during summer and fall. The distributions of the commercial and recreational fisheries and estimates of forage availability have varied substantially over the past century. Time‐series quantifying Albacore diet can help link forage composition to variability in Albacore abundance and distribution and, consequently, their availability to fishers. Previous diet studies in the CCLME are of relatively short duration, and long‐term variability in Albacore diet remains poorly understood. We describe the diets of juvenile Albacore from three regions in the CCLME from 2007 to 2019 and use classification and regression tree analysis to explore environmental drivers of variability. Important prey include Northern Anchovy (Engraulis mordax), rockfishes (Sebastesspp.), Boreal Clubhook Squid (Onychoteuthis borealijaponica), euphausiids (Order: Euphausiidae), and amphipods (Order: Amphipoda), each contributing >5% mean proportional abundance. Most prey items were short lived species or young‐of‐the‐year smaller than 10 cm. Diet variability was related to environmental conditions over the first 6 months of the year (PDO, sea surface temperature, and NPGO) and conditions concurrent with Albacore capture (region and surface nitrate flux). We describe foraging flexibility over regional and annual scales associated with these environmental influences. Continuous, long‐term studies offer the opportunity to identify flexibility in Albacore foraging behavior and begin to make a predictive link between environmental conditions early in the year and Albacore foraging during summer and fall.  more » « less
Award ID(s):
2011031
PAR ID:
10501874
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Fisheries Oceanography
Volume:
32
Issue:
5
ISSN:
1054-6006
Page Range / eLocation ID:
431 to 447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Investigating the foraging ecology and trophic interactions of threatened marine predators is critical to assess how community changes due to anthropogenic activities will affect predator–prey relationships. Two species of threatened coastal dolphins, the Indian Ocean humpback dolphin (Sousa plumbea) and the Indo‐Pacific bottlenose dolphin (Tursiops aduncus), occur off Nosy Be, north‐western Madagascar, in a region where artisanal fisheries are ecologically and socioeconomically important. Here, we investigated the feeding ecology of these two coastal dolphins and their trophic interactions with four other odontocetes using bulk stable carbon and nitrogen isotope analysis (δ13C andδ15N). Humpback dolphins had significantly enrichedδ13C values, reflecting a preference for coastal/benthic prey. Bottlenose dolphins had a broader isotopic niche, suggesting a broader range of prey and foraging habitats. The overlap in isotopic niche of all six odontocete species was limited, indicating partitioning of resources and habitats. Bayesian mass‐balance isotopic mixing models revealed that humpback dolphins forage primarily on reef planktivores (38.9%) and inner reef mesopredators (20.5%), while bottlenose dolphins had a broader diet, including reef‐associated (15%–32%) and pelagic prey (12%–23%). Our study reveals that the reliance on inshore prey by humpback dolphins may place them in competition with coastal fisheries. 
    more » « less
  2. Medina Guerrero, Antonio (Ed.)
    Pacific bluefin tuna, Thunnus orientalis , migrates from spawning grounds in the western Pacific Ocean to foraging grounds in the California Current System (CCS), where they are thought to specialize on high energy, surface schooling prey. However, there has been substantial variability in estimates of forage availability in the CCS over the past two decades. To examine the foraging ecology of juvenile T . orientalis in the face this variability, we quantified the diet and prey energetics of 963 individuals collected in the Southern California Bight (SCB) from 2008 to 2016. Using classification and regression tree analysis, we observed three sampling periods characterized by distinct prey. In 2008, T . orientalis diet was dominated by midwater lanternfishes and enoploteuthid squids. During 2009–2014, T . orientalis consumed diverse fishes, cephalopods, and crustaceans. Only in 2015–2016 did T . orientalis specialize on relatively high energy, surface schooling prey (e.g. anchovy, pelagic red crab). Despite containing the smallest prey, stomachs collected in 2009–2014 had the highest number of prey and similar total energetic contents to stomachs collected in 2015–2016. We demonstrate that T . orientalis is an opportunistic predator that can exhibit distinct foraging behaviors to exploit diverse forage. Expanding our understanding of T . orientalis foraging ecology will improve our ability to predict its responses to changes in resource availability as well as potential impacts on the fisheries it supports. 
    more » « less
  3. Ninety‐six juvenile specimens (37–54 mm standard length;LS) of the rarely collected Upward‐Mouth SpikefishAtrophacanthus japonicus(Triacanthodidae) were obtained from the stomachs of three Yellowfin TunaThunnus albacarescollected off Guam in the Mariana Islands in the central Pacific Ocean. These specimens extend the range ofA. japonicuseastward into Oceania. We review the systematic characters of the monotypic genusAtrophacanthusand present colour photographs of freshly collected specimens. The diet of the juvenile specimens ofA. japonicusconsisted of thecosome pteropods and foraminiferans. We present a range map ofA. japonicusbased on all known specimens and show that specimen size is related to whether specimens were collected in the pelagic zone or on the bottom. Our results support that, compared to all other Triacanthodidae,A. japonicushas an unusually extended pelagic larval and juvenile period, up to 54 mmLS, before settling to the bottom as adults. Lastly, we provide a multilocus phylogeny addressing the phylogenetic placement ofAtrophacanthusbased on eight of 11 triacanthodid genera and six genetic markers. Our results reveal thatAtrophacanthusis the sister group ofMacrorhamphosodesand they provide new insights about the evolutionary history of the family. 
    more » « less
  4. Abstract Staphylococcus aureusis an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users.S. aureusconcentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk ofS. aureusinfections from environmental waters,S. aureussurvival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measureS. aureusin turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhancedS. aureussurvival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of Oʻahu, Hawaiʻi.S. aureuswas detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations ofS. aureuswere in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmentalS. aureusconcentrations.S. aureuspersistence over the extent of the experiment was the greatest in high turbidity microcosms with T90's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence ofS. aureuscommunities that may increase the risk of exposure in environmental waters. Practitioner PointsStaphylococcus aureusconcentrations, survival, and persistence were assessed in environmental fresh and brackish waters.Experimental design preserved in situ conditions to measureS. aureussurvival.Higher initialS. aureusconcentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters.Water turbidity and salinity were both positively associated withS. aureusconcentrations and persistence.Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk toS. aureus. 
    more » « less
  5. Abstract Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on atRNAligase gene (Migut.N02091;RLG1a) exhibiting unprecedented, and fitness‐relevant,CNVwithin an annual population of the yellow monkeyflowerMimulus guttatus.RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate‐frequency three‐copy variants ofRLG1a (trip+;5/35 = 14%), andtrip+lines exhibited elevatedRLG1a expression under multiple conditions.trip+carriers, in addition to being over‐represented in late‐flowering and large‐flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rareRLG1a variant (high+) that carries 250–300 copies ofRLG1a totalling ~5.7 Mb (20–40% of a chromosome). In the progeny of ahigh+carrier, Mendelian segregation of diagnostic alleles andqPCR‐based copy counts indicate thathigh+is a single tandem array unlinked to the single‐copyRLG1a locus. In the wild,high+carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; bothp < 0.01), while single‐copy individuals were twice as fecund as eitherCNVtype in a lush year (2016:p < 0.005). Our results demonstrate fluctuating selection onCNVs affecting phenological traits in a wild population, suggest that planttRNAligases mediate stress‐responsive life‐history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification. 
    more » « less