skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coarse geometry of operator spaces and complete isomorphic embeddings into $$\ell _1$$ and $$c_0$$-sums of operator spaces
Award ID(s):
2054860
PAR ID:
10501879
Author(s) / Creator(s):
;
Publisher / Repository:
Mathematische Zeitschrift
Date Published:
Journal Name:
Mathematische Zeitschrift
Volume:
304
Issue:
3
ISSN:
0025-5874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We verify that a large portion of the theory of complex operator spaces and operator algebras (as represented by the 2004 book by the author and Le Merdy for specificity) transfers to the real case. We point out some of the results that do not work in the real case. We also discuss how the theory and standard constructions interact with the complexification, which is often as important, but sometimes much less obvious. For example, we develop the real case of the theory of operator space multipliers and the operator space centralizer algebra, and discuss how these topics connect with complexifi- cation. This turns out to differ in some important details from the complex case. We also characterize real structure in complex operator spaces and give ‘real’ characterizations of some of the most important objects in the subject. 
    more » « less
  2. We initiate the study of the small scale geometry of operator spaces. The authors have previously shown that a map between operator spaces which is completely coarse (that is, the sequence of its amplifications is equi-coarse) must be -linear. We obtain a generalization of the aforementioned result to completely coarse maps defined on the unit ball of an operator space. By relaxing the condition to a small scale one, we prove that there are many non-linear examples of maps which are completely Lipschitz in small scale. We define a geometric parameter for homogeneous Hilbertian operator spaces which imposes restrictions on the existence of such maps. 
    more » « less