Abstract Sexual dimorphism describes phenotypic differences between the sexes; the most prominent of which is sexual size dimorphism (SSD). Rensch’s rule (RR) is an allometric trend in which SSD increases in male-larger taxa and decreases in female-larger ones. Covariation between a trait and overall size within and across species can both be affected by sexual and natural selection. Thus, intraspecific allometric variation could influence the expression of RR. Here we used computer simulations to dissect how RR emerges under specific allometric patterns of intraspecific sexual differentiation in a trait. We found that sexual differentiation in static allometric slopes is the main determinant of RR. Based on our findings, RR and its converse can manifest in both body size and other traits. As a realistic showcase, we also examined RR and static allometry of different body parts in Mediterranean green lizards to establish whether intraspecific and evolutionary allometry are linked. Here, we identified RR and its converse for different traits, where the amount of sexual differentiation in static allometric slopes within species had a significant contribution to RR. Integrating the simulations and the empirical case we corroborate that sexual differentiation in static allometric slopes is a major parameter affecting evolutionary allometry.
more »
« less
Spotted Hyena skull size variation across geography favors the energetic equivalence rule over Bergmann’s Rule
Abstract Much historic work has focused on establishing geographical and ecological rules that broadly explain patterns in size variation. We examined geographic variation in Spotted Hyena skull size using geometric morphometrics and spatial statistics. We quantified size variation and sexual size dimorphism of the skull, and evaluated the influence of temperature, precipitation, land cover type, and population density on skull size. We found that female spotted hyenas are slightly larger on average than males. Our analysis of regional differences did not indicate geographic variation in sexual size dimorphism. Skull size of Spotted Hyenas varies with geography but does not adhere to Bergmann’s Rule. The smallest individuals of both sexes occur between −5.00° and 10.00° latitude and east of 28.50° longitude, with larger individuals being found elsewhere. Although Spotted Hyena skull size co-varies in some views with such variables as habitat type and climate indicators, skull size in this species most strongly co-varies with population density. The highest population densities are associated with the smallest skull size, possibly reflecting a relationship between high population density and access to resources. These results suggest that geographic variation in Spotted Hyena skull size is better explained by the energetic equivalence rule than Bergmann’s Rule.
more »
« less
- PAR ID:
- 10502044
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Mammalogy
- ISSN:
- 0022-2372
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The relationship between body size and latitude has been the focus of dozens of studies across many species. However, results of testing Bergmann’s rule — that organisms in colder climates or at higher latitudes possess larger body sizes — have been inconsistent across studies. We investigated whether snowshoe hares (Lepus americanus Erxleben, 1777) follow Bergmann’s rule by investigating differences in body mass using data from six published studies and from data of 755 individual hares captured from 10 populations across North America covering 26° of north latitude. We also explored alternative hypotheses related to variation in hare body mass, including winter severity, length of growing season, elevation, and snow depth. We found body mass of hares varied throughout their range, but the drivers of body mass differed based on geographic location. In northern populations, females followed Bergmann’s rule, whereas males did not. In northern populations, male mass was related to mean snow depth. In contrast, in southern populations, body mass of both sexes was related to length of the growing season. These differences likely represent variation in the drivers of selection. Specifically, in the north, a large body size is beneficial to conserve heat because of low winter temperatures, whereas in the south, it is likely due to increased food supply associated with longer growing seasons.more » « less
-
Abstract Sexual size dimorphism is common throughout the animal kingdom, but its evolution and development remain difficult to explain given most of the genome is shared between males and females. Sex-biased regulation of genes via sex hormone signaling offers an intuitive mechanism by which males and females could develop different body sizes. One prediction of this hypothesis is that the magnitude of sexual size dimorphism scales with the number of androgen response elements or estrogen response elements, the DNA motifs to which sex hormone receptors bind. Here, we test this hypothesis using 268 mammalian species with full genome assemblies and annotations. We find that in the two smallest-bodied lineages (Chiroptera and Rodentia), sexual size dimorphism increases (male-larger) as the number of androgen response elements in a genome increases. In fact, myomorph rodents—which are especially small-bodied with high sexual size dimorphism—show an explosion of androgen receptor elements in their genomes. In contrast, the three large-bodied lineages (orders Carnivora, Cetartiodactyla, and Primates) do not show this relationship, instead following Rensch's Rule, or the observation that sexual size dimorphism increases with overall body size. One hypothesis to unify these observations is that small-bodied organisms like bats and rodents tend to reach peak reproductive fitness quickly and are more reliant on hormonal signaling to achieve sexual size dimorphism over relatively short time periods. Our study uncovers a previously unappreciated relationship between sexual size dimorphism, body size, and hormone signaling that likely varies in ways related to life history.more » « less
-
Abstract Anthropogenic disturbance can have important influences on the fitness and behaviors of wild animals, including their boldness when exposed to risky conditions. We presented spotted hyenas (Crocuta crocuta) from two populations, each exposed to a different level of human activity, with a life‐size model hyena representing an intruder from another clan. The high‐disturbance population lived adjacent to human settlements, and the low‐disturbance population inhabited a relatively undisturbed part of the same national park in Kenya. The mock intruder was presented to individual hyenas to assess their reactions to an alien hyena, and to determine whether their reactions varied with their exposure to anthropogenic activity. We found that human disturbance was indeed associated with hyena risk‐taking behavior in response to the model intruder. Hyenas tested in the low‐disturbance area exhibited more risk‐taking behaviors by approaching the mock intruder more closely, and spending more time near it, than did their counterparts living in high‐disturbance areas. Hyenas that spent less time in close proximity to the model had greater survivorship than those that spent more time in close proximity to it, regardless of disturbance level. Furthermore, the individual differences in risk‐taking measured here were consistent with those obtained previously from the same animals using a different set of experimental manipulations. However, the experimentally induced behaviors were not consistent with naturally occurring risk‐taking behaviors in proximity to lions; this suggests that risk‐taking behaviors are consistent within individuals across experimental contexts, but that exposure to lions elicits different responses. Although our results are consistent with those from earlier tests of anthropogenic disturbance and boldness in spotted hyenas and other predators, they differ from results obtained from birds and small mammals, which are generally found to be bolder in areas characterized by human disturbance.more » « less
-
Living hyenas are infamous for crushing the bones of their prey to extract the nutritious marrow inside. This feeding ability is rare today, and African and Asian hyenas, particularly the spotted hyena, are the only true ‘bone-crackers’ in our modern ecosystems. Yet, between 16 to 2 million years ago, the common, but now extinct North American dogs also crushed bone. Their skeletal features – such as highly robust skulls and jaws, teeth to withstand high stress, and large muscle-attachment areas for a powerful bite –share many similarities with the spotted hyena. It is therefore likely that these extinct North American dogs played a similar role in the ecosystem as living hyenas do now. The last of these bone-cracking dogs, Borophagus, vanished approximately 2 million years ago. In a recent study in 2018, researchers discovered fossilized feces, also known as coprolites, which presumably belong to Borophagus parvus that lived in central California between 5 to 6 million years. These coprolites preserve ingested bone and so provide more evidence of what this species of dogs ate. Now, Wang et al. – including some of the researchers involved in the previous study – analyzed the fossil coprolites and their ingredients in great detail using computer tomography, measurements and comparisons with living predators and their prey. The results show that Borophagus parvus weighed around 24 kg and hunted large prey of 35 kg up to 100 kg: the size of a living mule deer. Its skull structure was similar to the spotted hyena, but its digestive system resembled that of striped and brown hyenas. Spotted hyenas have chalk white feces containing digested bone matter, presumably due to a highly acidic digestive system, but the coprolites of Borophagus contained undissolved bones (which they ate regularly). Wang et al. also discovered that these dogs dropped feces in clusters, which is how the spotted hyena and wolves mark territory. This suggests that Borophagus were also social animals. Bone-crackers (modern and extinct) act as apex predators and providers of free organic material needed for decomposition, which are essential roles for maintaining a healthy ecosystem. The extinction of Borophagus likely modified the dynamics of the food web over the past few million years. It remains unclear why this way of feeding is absent in all living animals of North America. Future studies could investigate how the disappearance of Borophagus may have influenced the establishment of modern environments, eventually setting the scene for human habitation of the continent.more » « less
An official website of the United States government
