skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reflecting on the Scalable Adaptive Graphics Environment Team’s 20-Year Translational Research Endeavor in Digital Collaboration Tools
Translational software research bridges the gap between scientific innovations and practical applications, driving impactful societal advancements. However, developing such software is challenging due to interdisciplinary collaboration, technology adoption, and postfunding sustainability. This article presents the experiences and insights of the Scalable Adaptive Graphics Environment (SAGE) team, which has spent two decades developing translational, cross-disciplinary, collaboration tools to benefit computational science research. With a focus on SAGE and its next-generation iterations, we explore the inherent challenges in translational research, such as fostering cross-disciplinary collaboration, motivating technology adoption, and ensuring postfunding product sustainability. We also discuss the roles of funding agencies, policymakers, and academic institutions in promoting translational research. Although the journey is fraught with challenges, the societal impact and satisfaction derived from translational research underscore its significance in the broader scientific landscape. This article aims to encourage further conversation and the development of effective models for translational software projects.  more » « less
Award ID(s):
2004014 2149133 2003800 2003387
PAR ID:
10502113
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Computing in Science & Engineering
Volume:
25
Issue:
2
ISSN:
1521-9615
Page Range / eLocation ID:
50 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The systemic challenges of the COVID-19 pandemic require cross-disciplinary collaboration in a global and timely fashion. Such collaboration needs open research practices and the sharing of research outputs, such as data and code, thereby facilitating research and research reproducibility and timely collaboration beyond borders. The Research Data Alliance COVID-19 Working Group recently published a set of recommendations and guidelines on data sharing and related best practices for COVID-19 research. These guidelines include recommendations for researchers, policymakers, funders, publishers and infrastructure providers from the perspective of different domains (Clinical Medicine, Omics, Epidemiology, Social Sciences, Community Participation, Indigenous Peoples, Research Software, Legal and Ethical Considerations). Several overarching themes have emerged from this document such as the need to balance the creation of data adherent to FAIR principles (findable, accessible, interoperable and reusable), with the need for quick data release; the use of trustworthy research data repositories; the use of well-annotated data with meaningful metadata; and practices of documenting methods and software. The resulting document marks an unprecedented cross-disciplinary, cross-sectoral, and cross-jurisdictional effort authored by over 160 experts from around the globe. This letter summarises key points of the Recommendations and Guidelines, highlights the relevant findings, shines a spotlight on the process, and suggests how these developments can be leveraged by the wider scientific community. 
    more » « less
  2. Businesses are increasingly facing economic, social, and environmental sustainability challenges. Science, technology, engineering, and math (STEM) are needed to address business sustainability needs, yet such competencies are noticeably absent from academic literature and business curricula. To mend the curricular gap, we make the case for developing cross-disciplinary STEM-based business sustainability curricula that enhance students’ sustainability literacy and cognitive abilities related to STEM and sustainability. A literature review is provided that documents curricular gaps specific to STEM and sustainability in the academic literature and in business sustainability program offerings. We then present a framework that can be used to integrate STEM and sustainability across the curricula and to evaluate curricular implementation. This review provides timely and relevant information that can help business management educators, instructors, and administrators justify, design, develop, implement, and evaluate STEM-based business sustainability curricula. 
    more » « less
  3. Chen, Audrey (Ed.)
    Training students in interdisciplinary thinking is critical for the future of scientific discovery and problem-solving more generally. Therefore, students must have early opportunities to grapple with knowns and unknowns at the frontiers of interdisciplinary inquiry. Neuroimmunology challenges students to think at the intersection of two rapidly evolving fields, neuroscience and immunology. As these disciplines focus on complex systems, their intersection represents a unique opportunity for students to witness the nature and process of interdisciplinary collaboration and synthesis. However, the fast pace of research and specialized knowledge in both disciplines present challenges for instructors interested in teaching the subject to undergraduate students. In this article, we share and describe a curriculum developed using a backward-design approach to analyze core concepts in both neuroscience and immunology, which were articulated by disciplinary experts in collaboration with their respective education communities. We determine overlaps between these conceptual frameworks, identify key prerequisite knowledge, and suggest example activities to introduce neuroimmunology to undergraduate students. This curriculum may be used for an entire course, or modified into shorter units that instructors can use within diverse educational contexts. We hope that this effort will encourage instructors to adopt neuroimmunology into their curricula, provide a roadmap to forge other such interdisciplinary educational collaborations, and prepare students to develop creative solutions to current and future societal problems. 
    more » « less
  4. Abstract Meeting the United Nation’ Sustainable Development Goals (SDGs) calls for an integrative scientific approach, combining expertise, data, models and tools across many disciplines towards addressing sustainability challenges at various spatial and temporal scales. This holistic approach, while necessary, exacerbates the big data and computational challenges already faced by researchers. Many challenges in sustainability research can be tackled by harnessing the power of advanced cyberinfrastructure (CI). The objective of this paper is to highlight the key components and technologies of CI necessary for meeting the data and computational needs of the SDG research community. An overview of the CI ecosystem in the United States is provided with a specific focus on the investments made by academic institutions, government agencies and industry at national, regional, and local levels. Despite these investments, this paper identifies barriers to the adoption of CI in sustainability research that include, but are not limited to access to support structures; recruitment, retention and nurturing of an agile workforce; and lack of local infrastructure. Relevant CI components such as data, software, computational resources, and human-centered advances are discussed to explore how to resolve the barriers. The paper highlights multiple challenges in pursuing SDGs based on the outcomes of several expert meetings. These include multi-scale integration of data and domain-specific models, availability and usability of data, uncertainty quantification, mismatch between spatiotemporal scales at which decisions are made and the information generated from scientific analysis, and scientific reproducibility. We discuss ongoing and future research for bridging CI and SDGs to address these challenges. 
    more » « less
  5. Abstract Synthetic biology allows us to reuse, repurpose, and reconfigure biological systems to address society’s most pressing challenges. Developing biotechnologies in this way requires integrating concepts across disciplines, posing challenges to educating students with diverse expertise. We created a framework for synthetic biology training that deconstructs biotechnologies across scales—molecular, circuit/network, cell/cell-free systems, biological communities, and societal—giving students a holistic toolkit to integrate cross-disciplinary concepts towards responsible innovation of successful biotechnologies. We present this framework, lessons learned, and inclusive teaching materials to allow its adaption to train the next generation of synthetic biologists. 
    more » « less