We present novel constraints on the underlying galaxy formation physics (e.g. mass-loading factor, star formation history, and metal retention) at z ≳ 7 for the low-mass (M* ∼ 105 M⊙) Local Group ultrafaint dwarf galaxy (UFD) Eridanus ii (Eri ii). Using a hierarchical Bayesian framework, we apply a one-zone chemical evolution model to Eri ii’s CaHK-based photometric metallicity distribution function (MDF; [Fe/H]) and find that the evolution of Eri ii is well characterized by a short, exponentially declining star formation history ($\tau _\text{SFH}=0.39\pm _{0.13}^{0.18}$ Gyr), a low star formation efficiency ($\tau _\text{SFE}=27.56\pm _{12.92}^{25.14}$ Gyr), and a large mass-loading factor ($\eta =194.53\pm _{42.67}^{33.37}$). Our results are consistent with Eri ii forming the majority of its stars before the end of reionization. The large mass-loading factor implies strong outflows in the early history of Eri ii and is in good agreement with theoretical predictions for the mass scaling of galactic winds. It also results in the ejection of >90 per cent of the metals produced in Eri ii. We make predictions for the distribution of [Mg/Fe]–[Fe/H] in Eri ii as well as the prevalence of ultra metal-poor stars, both of which can be tested by future chemical abundance measurements. Spectroscopic follow-up of the highest metallicity stars in Eri ii ([Fe/H] > −2) will greatly improve model constraints. Our new framework can readily be applied to all UFDs throughout the Local Group, providing new insights into the underlying physics governing the evolution of the faintest galaxies in the reionization era.
more » « less- Award ID(s):
- 1909841
- PAR ID:
- 10502150
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 530
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 2315-2335
- Size(s):
- p. 2315-2335
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We develop a hybrid model of galactic chemical evolution that combines a multiring computation of chemical enrichment with a prescription for stellar migration and the vertical distribution of stellar populations informed by a cosmological hydrodynamic disc galaxy simulation. Our fiducial model adopts empirically motivated forms of the star formation law and star formation history, with a gradient in outflow mass loading tuned to reproduce the observed metallicity gradient. With this approach, the model reproduces many of the striking qualitative features of the Milky Way disc’s abundance structure: (i) the dependence of the [O/Fe]–[Fe/H] distribution on radius Rgal and mid-plane distance |z|; (ii) the changing shapes of the [O/H] and [Fe/H] distributions with Rgal and |z|; (iii) a broad distribution of [O/Fe] at sub-solar metallicity and changes in the [O/Fe] distribution with Rgal, |z|, and [Fe/H]; (iv) a tight correlation between [O/Fe] and stellar age for [O/Fe] > 0.1; (v) a population of young and intermediate-age α-enhanced stars caused by migration-induced variability in the Type Ia supernova rate; (vi) non-monotonic age–[O/H] and age–[Fe/H] relations, with large scatter and a median age of ∼4 Gyr near solar metallicity. Observationally motivated models with an enhanced star formation rate ∼2 Gyr ago improve agreement with the observed age–[Fe/H] and age–[O/H] relations, but worsen agreement with the observed age–[O/Fe] relation. None of our models predict an [O/Fe] distribution with the distinct bimodality seen in the observations, suggesting that more dramatic evolutionary pathways are required. All code and tables used for our models are publicly available through the Versatile Integrator for Chemical Evolution (VICE; https://pypi.org/project/vice).more » « less
-
ABSTRACT We model the stellar abundances and ages of two disrupted dwarf galaxies in the Milky Way stellar halo: Gaia-Sausage Enceladus (GSE) and Wukong/LMS-1. Using a statistically robust likelihood function, we fit one-zone models of galactic chemical evolution with exponential infall histories to both systems, deriving e-folding time-scales of τin = 1.01 ± 0.13 Gyr for GSE and $\tau _\text{in} = 3.08^{+3.19}_{-1.16}$ Gyr for Wukong/LMS-1. GSE formed stars for $\tau _\text{tot} = 5.40^{+0.32}_{-0.31}$ Gyr, sustaining star formation for ∼1.5–2 Gyr after its first infall into the Milky Way ∼10 Gyr ago. Our fit suggests that star formation lasted for $\tau _\text{tot} = 3.36^{+0.55}_{-0.47}$ Gyr in Wukong/LMS-1, though our sample does not contain any age measurements. The differences in evolutionary parameters between the two are qualitatively consistent with trends with stellar mass M⋆ predicted by simulations and semi-analytic models of galaxy formation. Our inferred values of the outflow mass-loading factor reasonably match $\eta \propto M_\star ^{-1/3}$ as predicted by galactic wind models. Our fitting method is based only on Poisson sampling from an evolutionary track and requires no binning of the data. We demonstrate its accuracy by testing against mock data, showing that it accurately recovers the input model across a broad range of sample sizes (20 ≤ N ≤ 2000) and measurement uncertainties (0.01 ≤ σ[α/Fe], σ[Fe/H] ≤ 0.5; $0.02 \le \sigma _{\log _{10}(\text{age})} \le 1$). Due to the generic nature of our derivation, this likelihood function should be applicable to one-zone models of any parametrization and easily extensible to other astrophysical models which predict tracks in some observed space.
-
ABSTRACT Stars move away from their birthplaces over time via a process known as radial migration, which blurs chemo–kinematic relations used for reconstructing the Milky Way (MW) formation history. To understand the true time evolution of the MW, one needs to take into account the effects of this process. We show that stellar birth radii can be derived directly from the data with minimum prior assumptions on the Galactic enrichment history. This is done by first recovering the time evolution of the stellar birth metallicity gradient, $\mathrm{ d}\mathrm{[Fe/H]}(R, \tau)/\mathrm{ d}R$, through its inverse relation to the metallicity range as a function of age today, allowing us to place any star with age and metallicity measurements back to its birthplace, R$_b$. Applying our method to a large high-precision data set of MW disc subgiant stars, we find a steepening of the birth metallicity gradient from 11 to 8 Gyr ago, which coincides with the time of the last massive merger, Gaia–Sausage–Enceladus (GSE). This transition appears to play a major role in shaping both the age–metallicity relation and the bimodality in the [$\alpha$/Fe]–[Fe/H] plane. By dissecting the disc into mono-R$_b$ populations, clumps in the low-[$\alpha$/Fe] sequence appear, which are not seen in the total sample and coincide in time with known star-formation bursts, possibly associated with the Sagittarius Dwarf Galaxy. We estimated that the Sun was born at $4.5\pm 0.4$ kpc from the Galactic centre. Our R$_b$ estimates provide the missing piece needed to recover the Milky Way formation history.
-
Abstract We use deep narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope (HST) to construct the metallicity distribution function (MDF) of Local Group ultra-faint dwarf galaxy Eridanus
II (EriII ). When combined with archival F475W and F814W data, we measure metallicities for 60 resolved red giant branch stars as faint asm F475W∼ 24 mag, a factor of ∼4× more stars than current spectroscopic MDF determinations. We find that EriII has a mean metallicity of [Fe/H] = −2.50 and a dispersion of , which are consistent with spectroscopic MDFs, though more precisely constrained owing to a larger sample. We identify a handful of extremely metal-poor star candidates (EMP; [Fe/H] < −3) that are marginally bright enough for spectroscopic follow-up. The MDF of EriII appears well described by a leaky box chemical evolution model. We also compute an updated orbital history for EriII using Gaia eDR3 proper motions, and find that it is likely on first infall into the Milky Way. Our findings suggest that EriII underwent an evolutionary history similar to that of an isolated galaxy. Compared to MDFs for select cosmological simulations of similar mass galaxies, we find that EriII has a lower fraction of stars with [Fe/H] < −3, though such comparisons should currently be treated with caution due to a paucity of simulations, selection effects, and known limitations of CaHK for EMPs. This study demonstrates the power of deep HST CaHK imaging for measuring the MDFs of UFDs. -
Abstract The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with
% of its stars strongly enhanced inr -process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ∼80% of the stars in the galaxy, while the remainder of the stars formed ∼3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence ofr -process-enhanced stars demonstrates that ther -process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and ther -process nucleosynthesis to be less than 500 Myr. This measurement rules out anr -process source with a delay time of several Gyr or more, such as GW170817.