skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative decompositions of Lipschitz mappings into metric spaces
We study the quantitative properties of Lipschitz mappings from Euclidean spaces into metric spaces. We prove that it is always possible to decompose the domain of such a mapping into pieces on which the mapping “behaves like a projection mapping” along with a “garbage set” that isarbitrarily smallin an appropriate sense. Moreover, our control is quantitative, i.e., independent of both the particular mapping and the metric space it maps into. This improves a theorem of Azzam-Schul from the paper “Hard Sard”, and answers a question left open in that paper. The proof uses ideas of quantitative differentiation, as well as a detailed study of how to supplement Lipschitz mappings by additional coordinates to form bi-Lipschitz mappings.  more » « less
Award ID(s):
2054004 1763973
PAR ID:
10502192
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
376
Issue:
1071
ISSN:
0002-9947
Page Range / eLocation ID:
5521 to 5571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we find sharp conditions on metric measure spaces X so that any bi-Lipschitz embedding of a subset of the real line into X extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset Y of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in X by bi-Lipschitz curves. 
    more » « less
  2. Abstract Stochastic embeddings of finite metric spaces into graph-theoretic trees have proven to be a vital tool for constructing approximation algorithms in theoretical computer science. In the present work, we build out some of the basic theory of stochastic embeddings in the infinite setting with an aim toward applications to Lipschitz free space theory. We prove that proper metric spaces stochastically embedding into$$\mathbb {R}$$-trees have Lipschitz free spaces isomorphic to$$L^1$$-spaces. We then undergo a systematic study of stochastic embeddability of Gromov hyperbolic metric spaces into$$\mathbb {R}$$-trees by way of stochastic embeddability of their boundaries into ultrametric spaces. The following are obtained as our main results: (1) every snowflake of a compact, finite Nagata-dimensional metric space stochastically embeds into an ultrametric space and has Lipschitz free space isomorphic to$$\ell ^1$$, (2) the Lipschitz free space over hyperbolicn-space is isomorphic to the Lipschitz free space over Euclideann-space and (3) every infinite, finitely generated hyperbolic group stochastically embeds into an$$\mathbb {R}$$-tree, has Lipschitz free space isomorphic to$$\ell ^1$$, and admits a proper, uniformly Lipschitz affine action on$$\ell ^1$$. 
    more » « less
  3. In this paper we present new proofs of the non-embeddability of countably branching trees into Banach spaces satisfying property beta_p and of countably branching diamonds into Banach spaces which are l_p-asymptotic midpoint uniformly convex (p-AMUC) for p>1. These proofs are entirely metric in nature and are inspired by previous work of Jiří Matoušek. In addition, using this metric method, we succeed in extending these results to metric spaces satisfying certain embedding obstruction inequalities. Finally, we give Tessera-type lower bounds on the compression for a class of Lipschitz embeddings of the countably branching trees into Banach spaces containing l_p-asymptotic models for p>=1. 
    more » « less
  4. We give a simple quantitative condition, involving the “mapping content” of Azzam–Schul, which implies that a Lipschitz map from a Euclidean space to a metric space must be close to factoring through a tree. Using results of Azzam–Schul and the present authors, this gives simple checkable conditions for a Lipschitz map to have a large piece of its domain on which it behaves like an orthogonal projection. The proof involves new lower bounds and continuity statements for mapping content, and relies on a “qualitative” version of the main theorem recently proven by Esmayli–Hajłasz. 
    more » « less
  5. The paper provides an overarching framework for the study of some of the intrinsic geometries that a topological group may carry. An initial analysis is based on geometric nonlinear functional analysis, that is, the study of Banach spaces as metric spaces up to various notions of isomorphism, such as bi-Lipschitz equivalence, uniform homeomorphism, and coarse equivalence. This motivates the introduction of the various geometric categories applicable to all topological groups, namely, their uniform and coarse structure, along with those applicable to a more select class, that is, (local) Lipschitz and quasimetric structure. Our study touches on Lie theory, geometric group theory, and geometric nonlinear functional analysis and makes evident that these can all be seen as instances of a single coherent theory. 
    more » « less