Characterizing how organisms respond to transient temperatures may further our understanding of their susceptibility to climate change. Past studies in the freshwater turtle,Trachemys scripta, have demonstrated that the timing and duration of heat waves can have major implications for the response of genes involved in gonadal development and the production of female hatchlings. Yet, no study has considered how the response of these genes to transient cold snap exposure may affect gonadal development and the production of males. We investigated how cold snap timing affects gonadal gene expression inT. scriptaembryos and how the duration of an early cold snap influences the resulting hatchling sex ratios. Results show that responsiveness to cold changes rapidly across development, such that genes that responded when exposure began on incubation day 14 responded differently when exposure occurred just four or eight days later. Sex ratio data revealed that embryos experiencing an early cold snap also require a long exposure (>20 days) before most commit to testis development, suggesting that warm baseline temperatures may lower their sensitivity to later cold snap exposures. These results highlight how individual responses to incubation temperature can change rapidly across development in turtles and have important effects on sex ratios.
more »
« less
This content will become publicly available on December 1, 2025
Shell shape does not accurately predict self-righting ability in hatchling freshwater turtles
Abstract Flat hydrodynamic shells likely represent an evolutionary trade-off between adaptation to an aquatic lifestyle and the instability of more rounded shells, thought beneficial for self-righting. Trade-offs often result in compromises, this is particularly true when freshwater turtles, with flatter shells, must self-right to avoid the negative effects of inverting. These turtles, theoretically, invest more biomechanical effort to achieve successful and timely self-righting when compared to turtles with rounded carapaces. This increase in effort places these hatchlings in a precarious position; prone to inversion and predation and with shells seemingly maladapted to the act of self-righting. Here, we examine hatchling self-righting performance in three morphologically distinct freshwater turtle species (Apalone spinifera,Chelydra serpentinaandTrachemys scripta scripta) that inhabit similar environmental niches. We demonstrate that these hatchlings were capable of rapid self-righting and used considerably less biomechanical effort relative to adult turtles. Despite differences in shell morphology the energetic efficiency of self-righting remained remarkably low and uniform between the three species. Our results confound theoretical predictions of self-righting ability based on shell shape metrics and indicate that other morphological characteristics like neck or tail morphology and shell material properties must be considered to better understand the biomechanical nuances of Testudine self-righting.
more »
« less
- Award ID(s):
- 1755187
- PAR ID:
- 10502213
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Newly-developed methods for utilizing performance surfaces—multivariate representations of the relationship between phenotype and functional performance—allow researchers to test hypotheses about adaptive landscapes and evolutionary diversification with explicit attention to functional factors. Here, information from performance surfaces of three turtle shell functions—shell strength, hydrodynamics, and self-righting—is used to test the hypothesis that turtle lineages transitioning from aquatic to terrestrial habitats show patterns of shell shape evolution consistent with decreased importance of hydrodynamic performance. Turtle shells are excellent model systems for evolutionary functional analysis. The evolution of terrestriality is an interesting test case for the efficacy of these methods because terrestrial turtles do not show a straightforward pattern of morphological convergence in shell shape: many terrestrial lineages show increased shell height, typically assumed to decrease hydrodynamic performance, but there are also several lineages where the evolution of terrestriality was accompanied by shell flattening. Performance surface analyses allow exploration of these complex patterns and explicit quantitative analysis of the functional implications of changes in shell shape. Ten lineages were examined. Nearly all terrestrial lineages, including those which experienced decreased shell height, are associated with morphological changes consistent with a decrease in the importance of shell hydrodynamics. This implies a common selective pattern across lineages showing divergent morphological patterns. Performance studies such as these hold great potential for integrating adaptive and performance data in macroevolutionary studies.more » « less
-
Abstract Armoured, rigid bodied animals, such as Testudines, must self-right should they find themselves in an inverted position. The ability to self-right is an essential biomechanical and physiological process that influences survival and ultimately fitness. Traits that enhance righting ability may consequently offer an evolutionary advantage. However, the energetic requirements of self-righting are unknown. Using respirometry and kinematic video analysis, we examined the metabolic cost of self-righting in the terrestrial Mediterranean spur-thighed tortoise and compared this to the metabolic cost of locomotion at a moderate, easily sustainable speed. We found that self-righting is, relatively, metabolically expensive and costs around two times the mass-specific power required to walk. Rapid movements of the limbs and head facilitate successful righting however, combined with the constraints of breathing whilst upside down, contribute a significant metabolic cost. Consequently, in the wild, these animals should favour environments or behaviours where the risk of becoming inverted is reduced.more » « less
-
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq:Apalone spinifera(ZZ/ZW, 2n= 66) andStaurotypus triporcatus(XX/XY, 2n= 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling inApalone(Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions inStaurotypus(Kinosternidae) andTrachemys scripta(Emydidae). Furthermore, we identified a chromosome folding pattern that enables “centromere–telomere interactions” previously undetected in turtles. The combined turtle pattern of “centromere–telomere interactions” (discovered here) plus “centromere clustering” (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.more » « less
-
Abstract Small populations of imperiled species are susceptible to the negative consequences of skewed sex‐ratios. In imperiled species with environmental sex determination such as sea turtles, examining sex ratios across a range of environments and population abundance levels can provide insight into factors that influence population resilience, which can then be the foci of management plans for these species. Breeding sex ratios (the ratio of actively breeding males to females during a reproductive season; BSRs) extrapolated from genetic parentage analyses are a common approach for enumerating sex ratios in sea turtles. Such analyses also allow for the characterization of multiple paternity within sea turtle clutches, which should reflect BSRs and breeding behaviors. We characterized the first BSR for a breeding assemblage of loggerhead sea turtles (Caretta caretta) belonging to the temperate, low‐abundance Northern Gulf of Mexico Recovery Unit using genotypes of 16 microsatellite loci from nesting females and hatchlings. Unlike prior studies at both more‐tropical and more‐temperate, and higher‐abundance, Recovery Units in this region, we found a balanced BSR of 1.3:1 males:female and a low incidence (~17%) of multiple paternity. This suggests that there are relatively few males breeding at this assemblage and within this Recovery Unit. Beaches in this region are expected to produce substantial numbers of male hatchlings based on sand temperature data. The relative dearth of mature males may then be due to hydrologic disturbances that disproportionately affect the fitness and survival of male hatchlings, or due to demographic stochasticity. More work is needed to study the factors that might influence male hatchling production and fitness in this region, particularly as climate change is predicted to lead to feminization in global sea turtle populations. Our work demonstrates the broad utility of characterizing BSRs and other sex ratios across a range of populations in imperiled, environmentally sensitive species.more » « less
An official website of the United States government
