skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alterations of biaxial viscoelastic properties of the right ventricle in pulmonary hypertension development in rest and acute stress conditions
Introduction:The right ventricle (RV) mechanical property is an important determinant of its function. However, compared to its elasticity, RV viscoelasticity is much less studied, and it remains unclear how pulmonary hypertension (PH) alters RV viscoelasticity. Our goal was to characterize the changes in RV free wall (RVFW) anisotropic viscoelastic properties with PH development and at varied heart rates. Methods:PH was induced in rats by monocrotaline treatment, and the RV function was quantified by echocardiography. After euthanasia, equibiaxial stress relaxation tests were performed on RVFWs from healthy and PH rats at various strain-rates and strain levels, which recapitulate physiological deformations at varied heart rates (at rest and under acute stress) and diastole phases (at early and late filling), respectively. Results and Discussion:We observed that PH increased RVFW viscoelasticity in both longitudinal (outflow tract) and circumferential directions. The tissue anisotropy was pronounced for the diseased RVs, not healthy RVs. We also examined the relative change of viscosity to elasticity by the damping capacity (ratio of dissipated energy to total energy), and we found that PH decreased RVFW damping capacity in both directions. The RV viscoelasticity was also differently altered from resting to acute stress conditions between the groups—the damping capacity was decreased only in the circumferential direction for healthy RVs, but it was reduced in both directions for diseased RVs. Lastly, we found some correlations between the damping capacity and RV function indices and there was no correlation between elasticity or viscosity and RV function. Thus, the RV damping capacity may be a better indicator of RV function than elasticity or viscosity alone. These novel findings on RV dynamic mechanical properties offer deeper insights into the role of RV biomechanics in the adaptation of RV to chronic pressure overload and acute stress.  more » « less
Award ID(s):
2244994
PAR ID:
10502274
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Baek, Seungik
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
11
ISSN:
2296-4185
Subject(s) / Keyword(s):
pressure overload, RV failure, anisotropy, stored energy, dissipated energy, exercise capacity..
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kristin S. Miller. (Ed.)
    Abstract Cardiomyocytes are viscoelastic and key determinants of right ventricle (RV) mechanics. Intracellularly, microtubules are found to impact the viscoelasticity of isolated cardiomyocytes or trabeculae; whether they contribute to the tissue-level viscoelasticity is unknown. Our goal was to reveal the role of the microtubule network in the passive anisotropic viscoelasticity of the healthy RV. Equibiaxial stress relaxation tests were conducted in healthy RV free wall (RVFW) under early (6%) and end (15%) diastolic strain levels, and at sub- and physiological stretch rates. The viscoelasticity was assessed at baseline and after the removal of microtubule network. Furthermore, a quasi-linear viscoelastic (QLV) model was applied to delineate the contribution of microtubules to the relaxation behavior of RVFW. After removing the microtubule network, RVFW elasticity and viscosity were reduced at the early diastolic strain level and in both directions. The reduction in elasticity was stronger in the longitudinal direction, whereas the degree of changes in viscosity were equivalent between directions. There was insignificant change in RVFW viscoelasticity at late diastolic strain level. Finally, the modeling showed that the tissue's relaxation strength was reduced by the removal of the microtubule network, but the change was present only at a later time scale. These new findings suggest a critical role of cytoskeleton filaments in RVFW passive mechanics in physiological conditions. 
    more » « less
  2. Abstract Objective. Arterial viscosity is emerging as an important biomarker, in addition to the widely used arterial elasticity. This paper presents an approach to estimate arterial viscoelasticity using shear wave elastography (SWE).Approach. While dispersion characteristics are often used to estimate elasticity from SWE data, they are not sufficiently sensitive to viscosity. Driven by this, we develop a full waveform inversion (FWI) methodology, based on directly matching predicted and measured wall velocity in space and time, to simultaneously estimate both elasticity and viscosity. Specifically, we propose to minimize an objective function capturing the correlation between measured and predicted responses of the anterior wall of the artery.Results. The objective function is shown to be well-behaving (generally convex), leading us to effectively use gradient optimization to invert for both elasticity and viscosity. The resulting methodology is verified with synthetic data polluted with noise, leading to the conclusion that the proposed FWI is effective in estimating arterial viscoelasticity.Significance. Accurate estimation of arterial viscoelasticity, not just elasticity, provides a more precise characterization of arterial mechanical properties, potentially leading to a better indicator of arterial health. 
    more » « less
  3. Membrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis. 
    more » « less
  4. In this work, we demonstrate an adjustable microfluidic tactile sensor for measurement of post-exercise response of local arterial parameters. The sensor entailed a polydimethylsiloxane (PDMS) microstructure embedded with a 5×1 resistive transducer array. The pulse signal in an artery deflected the microstructure and registered as a resistance change by the transducer aligned at the artery. PDMS layers of different thicknesses were added to adjust the microstructure thickness for achieving good sensor-artery conformity at the radial artery (RA) and the carotid artery (CA). Pulse signals of nine (n=9) young healthy male subjects were measured at-rest and at different times post-exercise, and a medical instrument was used to simultaneously measure their blood pressure and heart rate. Vibration-model-based analysis was conducted on a measured pulse signal to estimate local arterial parameters: elasticity, viscosity, and radius. The arterial elasticity and viscosity increased, and the arterial radius decreased at the two arteries 1min post-exercise, relative to at-rest. The changes in pulse pressure (PP) and mean blood pressure (MAP) between at-rest and 1min post-exercise were not correlated with that of heart rate and arterial parameters. After the large 1min post-exercise response, the arterial parameters and PP all went back to their at-rest values over time post-exercise.Clinical Relevance— The study results show the potential application of an affordable, user-friendly device for a more comprehensive arterial health assessment. 
    more » « less
  5. null (Ed.)
    Use of electronic cigarettes is rapidly increasing among youth and young adults, but little is known regarding the long-term cardiopulmonary health impacts of these nicotine-containing devices. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension (PH) and right ventricular (RV) remodeling in mice. These changes were associated with upregulated RV angiotensin-converting enzyme (ACE). Angiotensin II receptor blockers (ARBs) have been shown to reverse cigarette smoking-induced PH in rats. ACE inhibitor and ARB use in a large retrospective cohort of patients with PH is associated with improved survival. Here, we utilized losartan (an ARB specific for angiotensin II type 1 receptor) to further explore nicotine-induced PH. Male C57BL/6 mice received nicotine vapor for 12 h/day, and exposure was assessed using serum cotinine to achieve levels comparable to human smokers or electronic cigarette users. Mice were exposed to nicotine for 8 wk and a subset was treated with losartan via an osmotic minipump. Cardiac function was assessed using echocardiography and catheterization. Although nicotine exposure increased angiotensin II in the RV and lung, this finding was nonsignificant. Chronic, inhaled nicotine significantly increased RV systolic pressure and RV free wall thickness versus air control. These parameters were significantly lower in mice receiving both nicotine and losartan. Nicotine significantly increased RV internal diameter, with no differences seen between the nicotine and nicotine-losartan group. Neither nicotine nor losartan affected left ventricular structure or function. These findings provide the first evidence that antagonism of the angiotensin II type 1 receptor can ameliorate chronic, inhaled nicotine-induced PH and RV remodeling. NEW & NOTEWORTHY Chronic, inhaled nicotine causes pulmonary hypertension and right ventricular remodeling in mice. Treatment with losartan, an angiotensin II type 1 receptor antagonist, ameliorates nicotine-induced pulmonary hypertension and right ventricular remodeling. This novel finding provides preclinical evidence for the use of renin-angiotensin system-based therapies in the treatment of pulmonary hypertension, particularly in patients with a history of tobacco-product use. 
    more » « less