skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-relativistic quantum chromodynamics in parton showers
Abstract Measurements of quarkonia isolation in jets at the Large Hadron Collider (LHC) have been shown to disagree with fixed-order non-relativistic quantum chromodynamics (NRQCD) calculations, even at higher orders. Calculations using the fragmenting jet function formalism are able to better describe data but cannot provide full event-level predictions. In this work we provide an alternative model via NRQCD production of quarkonia in a timelike parton shower. We include this model in thePythia 8 event generator and validate our parton-shower implementation against analytic forms of the relevant fragmentation functions. Finally, we make inclusive predictions of quarkonia production for the decay of the standard-model Higgs boson.  more » « less
Award ID(s):
2209769
PAR ID:
10502437
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal C
Volume:
84
Issue:
4
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents the first measurement of$$\psi {(2S)}$$ ψ ( 2 S ) and$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ J / ψ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ μ + μ - )$$\pi ^+\pi ^-$$ π + π - final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ 13 TeV in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ 1.64 \,fb - 1 . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ p T ( tag ) / p T ( jet ) ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ p T ( jet ) and$$p_{\textrm{T}} (\text {tag})$$ p T ( tag ) bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower. 
    more » « less
  2. A<sc>bstract</sc> This paper presents measurements of top-antitop quark pair ($$ t\overline{t} $$ t t ¯ ) production in association with additionalb-jets. The analysis utilises 140 fb−1of proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or fourb-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, andb-jet pair properties. Observable quantities characterisingb-jets originating from the top quark decay and additionalb-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with$$ t\overline{t}b\overline{b} $$ t t ¯ b b ¯ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables. 
    more » « less
  3. A bstract A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The transverse momenta of jets within |η| < 4 . 7 are required to exceed 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower modeling, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single- parton scattering background. 
    more » « less
  4. Abstract A new release of the Monte Carlo event generator (version 7.3) has been launched. This iteration encompasses several enhancements over its predecessor, version 7.2. Noteworthy upgrades include: the implementation of a process-independent electroweak angular-ordered parton shower integrated with QCD and QED radiation; a new recoil scheme for initial-state radiation improving the behaviour of the angular-ordered parton shower; the incorporation of the heavy quark effective theory to refine the hadronization and decay of excited heavy mesons and heavy baryons; a dynamic strategy to regulate the kinematic threshold of cluster splittings within the cluster hadronization model; several improvements to the structure of the cluster hadronization model allowing for refined models; the possibility to extract event-by-event hadronization corrections in a well-defined way; the possibility of using the string model, with a dedicated tune. Additionally, a new tuning of the parton shower and hadronization parameters has been executed. This article discusses the novel features introduced in version 7.3.0. 
    more » « less
  5. A<sc>bstract</sc> By quantifying the distance between two collider events, one can triangulate a metric space and reframe collider data analysis as computational geometry. One popular geometric approach is to first represent events as an energy flow on an idealized celestial sphere and then define the metric in terms of optimal transport in two dimensions. In this paper, we advocate for representing events in terms of a spectral function that encodes pairwise particle angles and products of particle energies, which enables a metric distance defined in terms of one-dimensional optimal transport. This approach has the advantage of automatically incorporating obvious isometries of the data, like rotations about the colliding beam axis. It also facilitates first-principles calculations, since there are simple closed-form expressions for optimal transport in one dimension. Up to isometries and event sets of measure zero, the spectral representation is unique, so the metric on the space of spectral functions is a metric on the space of events. At lowest order in perturbation theory in electron-positron collisions, our metric is simply the summed squared invariant masses of the two event hemispheres. Going to higher orders, we present predictions for the distribution of metric distances between jets in fixed-order and resummed perturbation theory as well as in parton-shower generators. Finally, we speculate on whether the spectral approach could furnish a useful metric on the space of quantum field theories. 
    more » « less