skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2209769

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The CODEX-βapparatus is a demonstrator for the proposed future CODEX-b experiment, a long-lived-particle detector foreseen for operation at IP8 during HL-LHC data-taking. The demonstrator project, intended to collect data in 2025, is described, with a particular focus on the design, construction, and installation of the new apparatus. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract Measurements of quarkonia isolation in jets at the Large Hadron Collider (LHC) have been shown to disagree with fixed-order non-relativistic quantum chromodynamics (NRQCD) calculations, even at higher orders. Calculations using the fragmenting jet function formalism are able to better describe data but cannot provide full event-level predictions. In this work we provide an alternative model via NRQCD production of quarkonia in a timelike parton shower. We include this model in thePythia 8 event generator and validate our parton-shower implementation against analytic forms of the relevant fragmentation functions. Finally, we make inclusive predictions of quarkonia production for the decay of the standard-model Higgs boson. 
    more » « less
  3. Abstract This paper presents the first measurement of$$\psi {(2S)}$$ ψ ( 2 S ) and$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ J / ψ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ μ + μ - )$$\pi ^+\pi ^-$$ π + π - final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ 13 TeV in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ 1.64 \,fb - 1 . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ p T ( tag ) / p T ( jet ) ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ p T ( jet ) and$$p_{\textrm{T}} (\text {tag})$$ p T ( tag ) bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. A<sc>bstract</sc> Usingppcollision data at$$ \sqrt{s} $$ s = 13 TeV, recorded by the LHCb experiment between 2016 and 2018 and corresponding to an integrated luminosity of 5.4 fb−1, the forward-backward asymmetry in thepp→Z/γ*→μ+μprocess is measured. The measurement is carried out in ten intervals of the difference between the muon pseudorapidities, within a fiducial region covering dimuon masses between 66 and 116 GeV, muon pseudorapidities between 2.0 and 4.5 and muon transverse momenta above 20 GeV. These forward-backward asymmetries are compared with predictions, at next-to-leading order in the strong and electroweak couplings. The measured effective leptonic weak mixing angle is$$ {\sin}^2{\theta}_{\textrm{eff}}^{\ell }=0.23147\pm 0.00044\pm 0.00005\pm 0.00023, $$ sin 2 θ eff = 0.23147 ± 0.00044 ± 0.00005 ± 0.00023 , where the first uncertainty is statistical, the second arises from systematic uncertainties associated with the asymmetry measurement, and the third arises from uncertainties in the fit model used to extract$$ {\sin}^2{\theta}_{\textrm{eff}}^{\ell } $$ sin 2 θ eff from the asymmetry measurement. This result is based on an arithmetic average of results using the CT18, MSHT20, and NNPDF31 parameterisations of the proton internal structure, and is consistent with previous measurements and with predictions from the global electroweak fit. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. FeynHex is a free and open-source educational tool for building Feynman diagrams. We built this tool to provide an accurate representation of Feynman diagrams that can be physically explored by students. This a repository of the 3D models, documentation, and curriculum. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  6. This document is written as a contribution to the European Strategy of Particle Physics (ESPP) update. We offer a detailed overview of current developments and future directions for the CODEX-b detector, which aims to detect long-lived particles beyond the Standard Model. We summarize the scientific motivation for this detector, advances in our suite of simulation and detector optimization frameworks, and examine expected challenges, costs, and timelines in realizing the full detector. Additionally, we describe the technical specifications for the smaller-scale demonstrator detector (CODEX-β) we have installed in the LHCb experimental cavern. Note: Input to the 2026 update of the European Strategy for Particle Physics. 10 pages + references + appendices. 8 figures, 5 tables. This submission draws heavily from the CODEX-b Snowmass contribution (arXiv:2203.07316 ), but makes additional points and is a standalone separate document. arXiv admin note: substantial text overlap with arXiv:2203.07316 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  7. Assi, Benoit; Bierlich, Christian; Ilten, Phil; Menzo, Tony; Szewc, Manuel; Wilkinson, Michael; Youssef, Ahmed; Zupan, Jure (Ed.)
    We present a method for reweighting flavor selection in the Lund string fragmentation model. This is the process of calculating and applying event weights enabling fast and exact variation of hadronization parameters on pre-generated event samples. The procedure is post hoc, requiring only a small amount of additional information stored per event, and allowing for efficient estimation of hadronization uncertainties without repeated simulation. Weight expressions are derived from the hadronization algorithm itself, and validated against direct simulation for a wide range of observables and parameter shifts. The hadronization algorithm can be viewed as a hierarchical Markov process with stochastic rejections, a structure common to many complex simulations outside of high-energy physics. This perspective makes the method modular, extensible, and potentially transferable to other domains. We demonstrate the approach in Pythia, including both numerical stability and timing benefits. 
    more » « less
    Free, publicly-accessible full text available April 30, 2026
  8. The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software. 
    more » « less
  9. This work reports on a method for uncertainty estimation in simulated collider-event predictions. The method is based on a Monte Carlo-veto algorithm, and extends previous work on uncertainty estimates in parton showers by including uncertainty estimates for the Lund string-fragmentation model. This method is advantageous from the perspective of simulation costs: a single ensemble of generated events can be reinterpreted as though it was obtained using a different set of input parameters, where each event now is accompanied with a corresponding weight. This allows for a robust exploration of the uncertainties arising from the choice of input model parameters, without the need to rerun full simulation pipelines for each input parameter choice. Such explorations are important when determining the sensitivities of precision physics measurements. Accompanying code is available at https://gitlab.com/uchep/mlhad-weights-validation. 
    more » « less
  10. A bstract In this work, we explore new spin-1 states with axial couplings to the standard model fermions. We develop a data-driven method to estimate their hadronic decay rates based on data from τ decays and using SU(3) flavor symmetry. We derive the current and future experimental constraints for several benchmark models. Our framework is generic and can be used for models with arbitrary vectorial and axial couplings to quarks. We have made our calculations publicly available by incorporating them into the D ark C ast package, see https://gitlab.com/darkcast/releases . 
    more » « less