Abstract For a connected reductive groupGover a nonarchimedean local fieldFof positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter$${\mathcal {L}}^{ss}(\pi )$$to each irreducible representation$$\pi $$. Our first result shows that the Genestier-Lafforgue parameter of a tempered$$\pi $$can be uniquely refined to a tempered L-parameter$${\mathcal {L}}(\pi )$$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of$${\mathcal {L}}^{ss}(\pi )$$for unramifiedGand supercuspidal$$\pi $$constructed by induction from an open compact (modulo center) subgroup. If$${\mathcal {L}}^{ss}(\pi )$$is pure in an appropriate sense, we show that$${\mathcal {L}}^{ss}(\pi )$$is ramified (unlessGis a torus). If the inducing subgroup is sufficiently small in a precise sense, we show$$\mathcal {L}^{ss}(\pi )$$is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is$${\mathbb {P}}^1$$and a simple application of Deligne’s Weil II. 
                        more » 
                        « less   
                    
                            
                            Global solutions for 1D cubic defocusing dispersive equations: Part I
                        
                    
    
            Abstract This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years, and many global well-posedness results have been proved for a number of models under the assumption that the initial data are bothsmallandlocalized. However, except for the completely integrable case, no such results have been known for small but not necessarily localized initial data. In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for$$L^2$$initial data which aresmallandnonlocalized. Our main structural assumption is that our nonlinearity isdefocusing. However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team. In terms of scattering, we prove that our global solutions satisfy both global$$L^6$$Strichartz estimates and bilinear$$L^2$$bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.1There, by scaling, our result also admits a large data counterpart. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10502469
- Publisher / Repository:
- Forum of Mathematics, Pi
- Date Published:
- Journal Name:
- Forum of Mathematics, Pi
- Volume:
- 11
- ISSN:
- 2050-5086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials.more » « less
- 
            Abstract We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $$X_k$$ is the connected sum of k copies of $$\mathbb CP^2$$for$$k \ge 4$$, then we prove that the maximum degree of an L-Lipschitz self-map of $$X_k$$ is between $$C_1 L^4 (\log L)^{-4}$$ and $$C_2 L^4 (\log L)^{-1/2}$$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $$\sim L^n$$. For formal but nonscalable simply connectedn-manifolds, the maximal degree grows roughly like $$L^n (\log L)^{-\theta (1)}$$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $$L^\alpha $$ for some $$\alpha < n$$.more » « less
- 
            Abstract LetKbe an imaginary quadratic field and$$p\geq 5$$a rational prime inert inK. For a$$\mathbb {Q}$$-curveEwith complex multiplication by$$\mathcal {O}_K$$and good reduction atp, K. Rubin introduced ap-adicL-function$$\mathscr {L}_{E}$$which interpolates special values ofL-functions ofEtwisted by anticyclotomic characters ofK. In this paper, we prove a formula which links certain values of$$\mathscr {L}_{E}$$outside its defining range of interpolation with rational points onE. Arithmetic consequences includep-converse to the Gross–Zagier and Kolyvagin theorem forE. A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units in the anticyclotomic$${\mathbb {Z}}_p$$-extension$$\Psi _\infty $$of the unramified quadratic extension of$${\mathbb {Q}}_p$$. Along the way, we present a theory of local points over$$\Psi _\infty $$of the Lubin–Tate formal group of height$$2$$for the uniformizing parameter$$-p$$.more » « less
- 
            Abstract We study the$$L^p$$regularity of the Bergman projectionPover the symmetrized polydisc in$$\mathbb C^n$$. We give a decomposition of the Bergman projection on the polydisc and obtain an operator equivalent to the Bergman projection over antisymmetric function spaces. Using it, we obtain the$$L^p$$irregularity ofPfor$$p=\frac {2n}{n-1}$$which also implies thatPis$$L^p$$bounded if and only if$$p\in (\frac {2n}{n+1},\frac {2n}{n-1})$$.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    