Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract It has long been conjectured that for nonlinear wave equations that satisfy a nonlinear form of the null condition, the low regularity well-posedness theory can be significantly improved compared to the sharp results of Smith-Tataru for the generic case. The aim of this article is to prove the first result in this direction, namely for the time-like minimal surface equation in the Minkowski space-time. Further, our improvement is substantial, namely by 3/8 derivatives in two space dimensions and by 1/4 derivatives in higher dimensions.more » « less
-
Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${\mathbb {R}}^{d+2}$$ (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions$$d \geqq 4$$ . In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\geqq 2$$ . This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions.more » « less
-
Abstract The skew mean curvature flow is an evolution equation for a $$d$$ dimensional manifold immersed into $$\mathbb {R}^{d+2}$$, and which moves along the binormal direction with a speed proportional to its mean curvature. In this article, we prove small data global regularity in low-regularity Sobolev spaces for the skew mean curvature flow in dimensions $$d\geq 4$$. This extends the local well-posedness result in [7].more » « less
-
Abstract This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years, and many global well-posedness results have been proved for a number of models under the assumption that the initial data are bothsmallandlocalized. However, except for the completely integrable case, no such results have been known for small but not necessarily localized initial data. In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for$$L^2$$initial data which aresmallandnonlocalized. Our main structural assumption is that our nonlinearity isdefocusing. However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team. In terms of scattering, we prove that our global solutions satisfy both global$$L^6$$Strichartz estimates and bilinear$$L^2$$bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.1There, by scaling, our result also admits a large data counterpart.more » « less
-
This article is concerned with one dimensional dispersive flows with cubic non- linearities on the real line. In a very recent work, the authors have introduced a broad conjecture for such flows, asserting that in the defocusing case, small initial data yields global, scattering solutions. Then this conjecture was proved in the case of a Schr¨odinger dispersion relation. In terms of scattering, our global solutions were proved to satisfy both global L6 Strichartz estimates and bilinear L2 bounds. Notably, no localization assumption is made on the initial data. In this article we consider the focusing scenario. There potentially one may have small solitons, so one cannot hope to have global scattering solutions in general. Instead, we look for long time solutions, and ask what is the time-scale on which the solutions exist and satisfy good dispersive estimates. Our main result, which also applies in the case of the Schr¨odinger dispersion relation, asserts that for initial data of size ϵ, the solutions exist on the time-scale ϵ^{-8}, and satisfy the desired L^6 Strichartz estimates and bilinear L^2 bounds on the time-scale ϵ^{−6}. To the best of our knowledge, this is the first result to reach such a threshold.more » « less
-
Modified scattering phenomena are encountered in the study of global properties for nonlinear dispersive partial differential equations in situations where the decay of solutions at infinity is borderline and scattering fails just barely. An interesting example is that of problems with cubic nonlinearities in one space dimension. The method of testing by wave packets was introduced by the authors as a tool to efficiently capture the asymptotic equations associated to such flows, and thus establish the modified scattering mechanism in a simpler, more efficient fashion, and at lower regularity. In these expository notes we describe how this method can be applied to problems with general dispersion relations.more » « less
-
This article is concerned with infinite depth gravity water waves with constant vorticity in two space dimensions. We consider this system expressed in position-velocity potential holomorphic coordinates. We show that, for low-frequency solutions, the Benjamin-Ono equation gives a good and stable approximation to the system on the natural cubic time scale. The proof relies on refined cubic energy estimates and perturbative analysis.more » « less
An official website of the United States government
