skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strength and resilience of developing brain circuits predict adolescent emotional and stress responses during the COVID-19 pandemic
Abstract The COVID-19 pandemic has had profound but incompletely understood adverse effects on youth. To elucidate the role of brain circuits in how adolescents responded to the pandemic’s stressors, we investigated their prepandemic organization as a predictor of mental/emotional health in the first ~15 months of the pandemic. We analyzed resting-state networks from n = 2,641 adolescents [median age (interquartile range) = 144.0 (13.0) months, 47.7% females] in the Adolescent Brain Cognitive Development study, and longitudinal assessments of mental health, stress, sadness, and positive affect, collected every 2 to 3 months from May 2020 to May 2021. Topological resilience and/or network strength predicted overall mental health, stress and sadness (but not positive affect), at multiple time points, but primarily in December 2020 and May 2021. Higher resilience of the salience network predicted better mental health in December 2020 (β = 0.19, 95% CI = [0.06, 0.31], P = 0.01). Lower connectivity of left salience, reward, limbic, and prefrontal cortex and its thalamic, striatal, amygdala connections, predicted higher stress (β = −0.46 to −0.20, CI = [−0.72, −0.07], P < 0.03). Lower bilateral robustness (higher fragility) and/or connectivity of these networks predicted higher sadness in December 2020 and May 2021 (β = −0.514 to −0.19, CI = [−0.81, −0.05], P < 0.04). These findings suggest that the organization of brain circuits may have played a critical role in adolescent stress and mental/emotional health during the pandemic.  more » « less
Award ID(s):
2116707
PAR ID:
10502512
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Cerebral Cortex
Volume:
34
Issue:
4
ISSN:
1047-3211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seyedmirzaei, Homa (Ed.)
    The COVID-19 pandemic had profound effects on developing adolescents that, to date, remain incompletely understood. Youth with preexisting mental health problems and associated brain alterations were at increased risk for higher stress and poor mental health. This study investigated impacts of adolescent pre-pandemic mental health problems and their neural correlates on stress, negative emotions and poor mental health during the first 15 months of the COVID-19 pandemic. N = 2,641 adolescents (median age = 12.0 years) from the Adolescent Brain Cognitive Development (ABCD) cohort were studied, who had pre-pandemic data on anxiety, depression, and behavioral (attention, aggression, social withdrawal, internalizing, externalizing) problems, longitudinal survey data on mental health, stress and emotions during the first 15 months following the outbreak, structural MRI, and resting-state fMRI. Data were analyzed using mixed effects mediation and moderation models. Preexisting mental health and behavioral problems predicted higher stress, negative affect and negative emotions (β = 0.09–0.21, CI=[0.03,0.32]), and lower positive affect (β = −0.21 to −0.09, CI=[−0.31,-0.01]) during the first ~6 months of the outbreak. Pre-pandemic structural characteristics of brain regions supporting social function and emotional processing (insula, superior temporal gyrus, orbitofrontal cortex, and the cerebellum) mediated some of these relationships (β = 0.10–0.15, CI=[0.01,0.24]). The organization of pre-pandemic brain circuits moderated (attenuated) associations between preexisting mental health and pandemic stress and negative emotions (β = −0.17 to −0.06, CI=[−0.27,-0.01]). Preexisting mental health problems and their structural brain correlates were risk factors for youth stress and negative emotions during the early months of the outbreak. In addition, the organization of some brain circuits was protective and attenuated the effects of preexisting mental health issues on youth responses to the pandemic’s stressors. 
    more » « less
  2. Abstract Study ObjectivesTo investigate associations between social jet lag and the developing adolescent brain. MethodsN = 3507 youth (median (IQR) age = 12.0 (1.1) years; 50.9% females) from the Adolescent Brain Cognitive Development cohort were studied. Social jet lag (adjusted for sleep debt [SJLSC] vs. nonadjusted [SJL]), topological properties and intrinsic dynamics of resting-state networks, and morphometric brain characteristics were analyzed. ResultsOver 35% of participants had SJLSC ≥ 2.0 h. Boys, Hispanic and Black non-Hispanic youth, and/or those at later pubertal stages had longer SJLSC (β = 0.06–0.68, CI = [0.02, 0.83], p ≤ .02), which was also associated with higher Body Mass Index (BMI) (β = 0.13, CI = [0.08, 0.18], p < .01). SJLSC and SJL were associated with lower strength of thalamic connections (β = −0.22, CI = [−0.39, −0.05], p = .03). Longer SJLSC was also associated with lower topological resilience and lower connectivity of the salience network (β = −0.04, CI = [−0.08, −0.01], p = .04), and lower thickness and/or volume of structures overlapping with this and other networks supporting emotional and reward processing and social function (β =−0.08 to −0.05, CI = [−0.12, −0.01], p < .05). Longer SJL was associated with lower connectivity and efficiency of the dorsal attention network (β = −0.05, CI = [−0.10, −0.01], p < .05). Finally, SJLSC and SJL were associated with alterations in spontaneously coordinated brain activity and lower information transfer between regions supporting sensorimotor integration, social function, and emotion regulation (β = −0.07 to −0.05, CI = [−0.12, −0.01], p < .04). ConclusionsMisaligned sleep is associated with widespread alterations in adolescent brain structures, circuit organization, and dynamics of regions that play critical roles in cognitive (including social) function, and emotion and reward regulation. 
    more » « less
  3. Abstract Social isolation during development, especially in adolescence, has detrimental but incompletely understood effects on the brain. This study investigated the neural correlates of preference for solitude and social withdrawal in a sample of 2809 youth [median (IQR) age = 12.0 (1.1) years, 1440 (51.26%) females] from the Adolescent Brain Cognitive Development study. Older youth whose parents had mental health issues more frequently preferred solitude and/or were socially withdrawn (β = 0.04 to 0.14, CI = [0.002, 0.19], P < 0.05), both of which were associated with internalizing and externalizing behaviors, depression, and anxiety (β = 0.25 to 0.45, CI = [0.20, 0.49], P < 0.05). Youth who preferred solitude and/or were socially withdrawn had lower cortical thickness in regions involved in social function (cuneus, insula, anterior cingulate, and superior temporal gyri) and/or mental health (β = −0.09 to −0.02, CI = [−0.14, −0.003], P < 0.05), and higher amygdala, entorhinal cortex, parahippocampal gyrus, and basal ganglia volume (β = 2.62 to 668.10, CI = [0.13, 668.10], P < 0.05). Youth who often preferred solitude had more topologically segregated dorsal attention, temporoparietal, and social networks (β = 0.07 to 0.10, CI = [0.02, 0.14], P ≤ 0.03). Socially withdrawn youth had a less topologically robust and efficient (β = −0.05 to −0.80, CI = [−1.34,−0.01], P < 0.03) and more fragile cerebellum (β = 0.04, CI = [0.01, 0.07], P < 0.05). These findings suggest that social isolation in adolescence may be a risk factor for widespread alterations in brain regions supporting social function and mental health. 
    more » « less
  4. Purpose: The first year of the COVID-19 pandemic constituted a major life stress event for many adolescents, associated with disrupted school, behaviors, social networks, and health concerns. However, pandemic-related stress was not equivalent for everyone and could have been influenced by pre-pandemic factors including brain structure and sleep, which both undergo substantial development during adolescence. Here, we analyzed clusters of perceived stress levels across the pandemic and determined developmentally relevant pre-pandemic risk factors in brain structure and sleep of persistently high stress during the first year of the COVID-19 pandemic. Methods: We investigated longitudinal changes in perceived stress at six timepoints across the first year of the pandemic (May 2020–March 2021) in 5559 adolescents (50 % female; age range: 11–14 years) in the United States (U.S.) participating in the Adolescent Brain Cognitive Development (ABCD) study. In 3141 of these adolescents, we fitted machine learning models to identify the most important pre-pandemic predictors from structural MRI brain measures and self-reported sleep data that were associated with persistently high stress across the first year of the pandemic. Results: Patterns of perceived stress levels varied across the pandemic, with 5 % reporting persistently high stress. Our classifiers accurately detected persistently high stress (AUC > 0.7). Pre-pandemic brain structure, specifically cortical volume in temporal regions, and cortical thickness in multiple parietal and occipital regions, predicted persistent stress. Pre-pandemic sleep difficulties and short sleep duration were also strong predictors of persistent stress, along with more advanced pubertal stage. Conclusions: Adolescents showed variable stress responses during the first year of the COVID-19 pandemic, and some reported persistently high stress across the whole first year. Vulnerability to persistent stress was evident in several brain structural and self-reported sleep measures, collected before the pandemic, suggesting the relevance of other pre-existing individual factors beyond pandemic-related factors, for persistently high stress responses. 
    more » « less
  5. Objective:The COVID-19 pandemic has put unprecedented stress on essential workers and their children. Limited cross-sectional research has found increases in mental health conditions from workload, reduced income, and isolation among essential workers. Less research has been conducted on children of essential workers. We examined trends in the crisis response of essential workers and their children from April 2020 through August 2021. Methods:We investigated the impact during 3 periods of the pandemic on workers and their children using anonymized data from the Crisis Text Line on crisis help-seeking texts for thoughts of suicide or active suicidal ideation (desire, intent, capability, time frame), abuse (emotional, physical, sexual, unspecified), anxiety/stress, grief, depression, isolation, bullying, eating or body image, gender/sexual identity, self-harm, and substance use. We used generalized estimating equations to study the longitudinal change in crisis response across the later stages of the pandemic using adjusted odds ratios (aORs) for worker status and crisis outcomes. Results:Results demonstrated higher odds of crisis outcomes for thoughts of suicide (aOR = 1.06; 95% CI, 1.00-1.12) and suicide capability (aOR = 1.14; 95% CI, 1.02-1.27) among essential workers than among nonessential workers. Children of essential workers had higher odds of substance use than children of nonessential workers (aOR = 1.33; 95% CI, 1.08-1.65), particularly for Indigenous American children (aOR = 2.76; 95% CI, 1.35-5.36). Essential workers (aOR = 1.17; 95% CI, 1.07-1.27) and their children (aOR = 1.18; 95% CI, 1.07-1.30) had higher odds of grief than nonessential workers and their children. Conclusion:Essential workers and their children had elevated crisis outcomes. Immediate and low-cost psychologically supportive interventions are needed to mitigate the mental health impacts of the COVID-19 pandemic on these populations. 
    more » « less