skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sub-Terahertz Rough Surface Scattering Measurement
Owing to the substantial bandwidth they offer, the exploration of  100+ GHz frequencies for wireless communications has surged in recent years. These sub-Terahertz channels are susceptible to blockage, which makes reflected paths crucial for seamless connectivity. However, at such high frequencies, reflections deviate from the known mirror-like specular behavior as the signal wavelength becomes comparable to the height perturbation at the surface of the reflectors. Such reflectors are considered electromagnetically "rough" which results in random non-specular reflection components that are not well understood. In this dataset, we present experimental results on the impact of rough scattering on over-the-air data links as well as the characteristics of ultra-broadband THz reflection response.  more » « less
Award ID(s):
2145240
PAR ID:
10502532
Author(s) / Creator(s):
Publisher / Repository:
IEEE DataPort
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper provides an analysis of radio wave scattering for frequencies ranging from the microwave to the Terahertz band (e.g., 1 GHz - 1 THz), by studying the scattering power reradiated from various types of materials with different surface roughnesses. First, fundamentals of scattering and reflection are developed and explained for use in wireless mobile radio, and the effect of scattering on the reflection coefficient for rough surfaces is investigated. Received power is derived using two popular scattering models - the directive scattering (DS) model and the radar cross section (RCS) model through simulations over a wide range of frequencies, materials, and orientations for the two models, and measurements confirm the accuracy of the DS model at 140 GHz. This paper shows that scattering can become a prominent propagation mechanism as frequencies extend to millimeter-wave (mmWave) and beyond, but at other times can be treated like simple reflection. Knowledge of scattering effects is critical for appropriate and realistic channel models, which further support the development of massive multiple input-multiple output (MIMO) techniques, localization, ray tracing tool design, and imaging for future 5G and 6G wireless systems. 
    more » « less
  2. To support the demand of multi-Gbps sensory data exchanges for enhancing (semi)-autonomous driving, millimeter-wave bands (mmWave) vehicular-to-infrastructure (V2I) communications have attracted intensive attention. Unfortunately, the vulnerability to blockages over mmWave bands poses significant design challenges, which can be hardly addressed by manipulating end transceivers, such as beamforming techniques. In this paper, we propose to enhance mmWave V2I communications by augmenting the transmission environments through reflection, where highly-reflective cheap metallic plates are deployed as tunable reflectors without damaging the aesthetic nature of the environments. In this way, alternative indirect line-of-sight (LOS) links are established by adjusting the angle of reflectors. Our fundamental challenge is to adapt the time-consuming reflector angle tuning to the highly dynamic vehicular environment. By using deep reinforcement learning, we propose the learning-based Fast Reflection (LFR) algorithm, which autonomously learns from the observable traffic pattern to select desirable reflector angles in advance for probably blocked vehicles in near future. Simulation results demonstrate our proposal could effectively augment mmWave V2I transmission environments with significant performance gain. 
    more » « less
  3. <p>This is an example line of NSF COLDEX MARFA ice penetrating radar data (CLX/MKB2o/R66a) that has been processed to provide azimuthal information about radar echos from below, and to the front and back of the aircraft. The input was 1 meter slow time resampled coherent range record with phase intact. The data were pulse compressed and an azimuth fast Fourier transform was used to convert to azimuth angles in 1 km chunks, then slices at -19°, +19˚ and nadir were selected for these numpy arrays. These can be displayed as an RGB image with Blue = nadir, red = forward and green = rear</p> <p>The nadir slice should dominate specular echos, as seen with englacial reflecting horizons; where this trades to more balanced returns across all three channels, scattering dominates, as with rough bed rock or volume scattering. A gmt text file contains information about where this transition occurs in the ice column.</p> <p>Details in delay Doppler processing can be found in <a href="http://pds-geosciences.wustl.edu/mro/mro-m-sharad-5-radargram- v1/mrosh_2001/document/rgram_processing.pdf">Campbell et al., 2014</a>; the idea for using this approach for looking at englacial structure was discussed by <a href="https://doi.org/10.5194/egusphere-egu23-2856">Arenas-Pingarrón, Á. et al., 2023</a>. Details of HiCARs/MARFA focused processing can be found in <a href="http://dx.doi.org/10.1109/TGRS.2007.897416">Peters et al., 2007</a>.</p> 
    more » « less
  4. Dielectric mirrors based on Bragg reflection and photonic crystals have broad application in controlling light reflection with low optical losses. One key parameter in the design of these optical multilayers is the refractive index contrast, which controls the reflector performance. This work reports the demonstration of a high-reflectivity multilayer photonic reflector that consists of alternating layers of TiO2films and nanolattices with low refractive index. The use of nanolattices enables high-index contrast between the high- and low-index layers, allowing high reflectivity with fewer layers. The broadband reflectance of the nanolattice reflectors with one to three layers has been characterized with peak reflectance of 91.9% at 527 nm and agrees well with theoretical optical models. The high-index contrast induced by the nanolattice layer enables a normalize reflectance band of Δλ/λoof 43.6%, the broadest demonstrated to date. The proposed nanolattice reflectors can find applications in nanophotonics, radiative cooling, and thermal insulation. 
    more » « less
  5. Automatedanalysisofopticalcolonoscopy(OC)videoframes (to assist endoscopists during OC) is challenging due to variations in color, lighting, texture, and specular reflections. Previous methods ei- ther remove some of these variations via preprocessing (making pipelines cumbersome) or add diverse training data with annotations (but expen- sive and time-consuming). We present CLTS-GAN, a new deep learning model that gives fine control over color, lighting, texture, and specular reflection synthesis for OC video frames. We show that adding these colonoscopy-specific augmentations to the training data can improve state-of-the-art polyp detection/segmentation methods as well as drive next generation of OC simulators for training medical students. The code and pre-trained models for CLTS-GAN are available on Computational Endoscopy Platform GitHub (https://github.com/nadeemlab/CEP). 
    more » « less