Dynamic bonds are a powerful approach to tailor the mechanical properties of elastomers and introduce shape-memory, self-healing, and recyclability. Among the library of dynamic crosslinks, electrostatic interactions among oppositely charged ions have been shown to enable tough and resilient elastomers and hydrogels. In this work, we investigate the mechanical properties of ionically crosslinked ethyl acrylate-based elastomers assembled from oppositely charged copolymers. Using both infrared and Raman spectroscopy, we confirm that ionic interactions are established among polymer chains. We find that the glass transition temperature of the complex is in between the two individual copolymers, while the complex demonstrates higher stiffness and more recovery, indicating that ionic bonds can strengthen and enhance recovery of these elastomers. We compare cycles to increasing strain levels at different strain rates, and hypothesize that at fast strain rates ionic bonds dynamically break and reform while entanglements do not have time to slip, and at slow strain rates ionic interactions are disrupted and these entanglements slip significantly. Further, we show that a higher ionic to neutral monomer ratio can increase the stiffness, but its effect on recovery is minimal. Finally, taking advantage of the versatility of acrylates, ethyl acrylate is replaced with the more hydrophilic 2-hydroxyethyl acrylate, and the latter is shown to exhibit better recovery and self-healing at a cost of stiffness and strength. The design principles uncovered for these easy-to-manufacture polyelectrolyte complex-inspired bulk materials can be broadly applied to tailor elastomer stiffness, strength, inelastic recovery, and self-healing for various applications.
more »
« less
Dynamic Interfaces in Self-Healable Polymers
It is well-established that interfaces play critical roles in biological and synthetic processes. Aside from significant practical applications, the most accessible and measurable quantity is interfacial tension, which represents a measure of the energy required to create or rejoin two surfaces. Owing to the fact that interfacial processes are critical in polymeric materials, this review outlines recent advances in dynamic interfacial processes involving physics and chemistry targeting self-healing. Entropic interfacial energies stored during damage participate in the recovery, and self-healing depends upon copolymer composition and monomer sequence, monomer molar ratios, molecular weight, and polymer dispersity. These properties ultimately impact chain flexibility, shape-memory recovery, and interfacial interactions. Self-healing is a localized process with global implications on mechanical and other properties. Selected examples driven by interfacial flow and shape memory effects are discussed in the context of covalent and supramolecular rebonding targeting self-healable materials development.
more »
« less
- Award ID(s):
- 2003005
- PAR ID:
- 10502581
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Langmuir
- Volume:
- 40
- Issue:
- 14
- ISSN:
- 0743-7463
- Page Range / eLocation ID:
- 7268 to 7285
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although dipolar forces between copolymer chains are relatively weak, they result in ubiquitous inter‐ and/or intramolecular interactions which are particularly critical in achieving the mechanical integrity of polymeric materials. In this study, a route is developed to obtain self‐healable properties in thermoplastic copolymers that rely on noncovalent dipolar interactions present in essentially all macromolecules and particularly fluorine‐containing copolymers. The combination of dipolar interactions between C─F and C═O bonds as well as CH2/CH3entities facilitates self‐healing without external intervention. The presence of dipole‐dipole, dipole‐induced dipole, and induced‐dipole induced dipole interactions leads to a viscoelastic response that controls macroscopic autonomous multicycle self‐healing of fluorinated copolymers under ambient conditions. Energetically favorable dipolar forces attributed to monomer sequence and monomer molar ratios induces desirable copolymer tacticities, enabling entropic energy recovery stored during mechanical damage. The use of dipolar forces instead of chemical or physical modifications not only eliminates additional alternations enabling multiple damage‐repair cycles but also provides further opportunity for designing self‐healable commodity thermoplastics. These materials may offer numerous applications, ranging from the use in electronics, ion batteries, H2fuel dispense hoses to self‐healable pet toys, packaging, paints and coatings, and many others.more » « less
-
ABSTRACT Vitrimers with self‐healing, recycling, and remolding capabilities are changing the paradigm for thermoset polymer design. In the past several years, vitrimers that exhibit shape memory effects and are curable by ultraviolet (UV) light have made significant progress in the realm of 4D printing. Herein, we report a molecular dynamics (MD) modeling framework to model UV curable shape memory vitrimers. We used our framework and compared our modeling results with one UV curable shape memory vitrimer found in the literature, bisphenol A glycerolate dimethacrylate. The comparison showed reasonable agreement between the modeling and experimental results in terms of thermomechanical and shape memory properties, along with self‐healing efficiency. It was found that during recycling, it was important for the network to percolate through a majority of the system to get reasonably high recovery stress and recycling efficiency. Once this was achieved, a topological descriptor that was found to represent the compactness of the network was identified as having a very high correlation with recovery stress and recycling efficiency for networks that percolated 70% or more of the monomers in a system.more » « less
-
Incorporating thermoplastic materials with shape memory properties into the fused filament fabrication process enables what is commonly referred to as 4D printing. When the blends are composed of one or more materials with inherent shape memory properties, the tailoring of critical parameters such as shape recovery temperature can be realized. Previous work by our group demonstrated the creation of shape memory polymer blends where one component was elastomeric. The following work entails the development and characterization of rigid polyester blends that are biocompatible and biodegradable in addition to having shape memory properties. Dynamic mechanical analysis (DMA) was used to determine the critical deformation and recovery temperatures. The effect of print raster patterns on the DMA results was also evaluated. Micro- tensile testing was used to characterize the physical properties of the materials at elevated temperatures. Finally, scanning electron microanalysis was used to examine the fracture surfaces of spent tensile specimens.more » « less
-
The structural design of self-healing materials determines the ultimate performance of the product that can be used in a wide range of applications. Incorporating intrinsic self-healing moieties into puncture-resistant materials could significantly improve the failure resistance and product longevity, since their rapidly rebuilt bonds will provide additional recovery force to resist the external force. Herein, we present a series of tailored urea-modified poly(dimethylsiloxane)-based self-healing polymers (U-PDMS-SPs) that exhibit excellent puncture-resistant properties, fast autonomous self-healing, multi-cycle adhesion capabilities, and well-tunable mechanical properties. Controlling the composition of chemical and physical cross-links enables the U-PDMS-SPs to have an extensibility of 528% and a toughness of 0.6 MJ m −3 . U-PDMS-SPs exhibit fast autonomous self-healability with 25% strain recovery within 2 minutes of healing, and over 90% toughness recovery after 16 hours. We further demonstrate its puncture-resistant properties under the ASTM D5748 standard with an unbreakable feature. Furthermore, the multi-cycle adhesive properties of U-PDMS-SPs are also revealed. High puncture resistance (>327 mJ) and facile adhesion with rapid autonomous self-healability will have a broad impact on the design of adhesives, roofing materials, and many other functional materials with enhanced longevity.more » « less
An official website of the United States government

