skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-entropy engineering of the crystal and electronic structures in a Dirac material
Abstract Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take theAMnSb2(A= Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at theAsite generates the compound (Ba0.38Sr0.14Ca0.16Eu0.16Yb0.16)MnSb2(denoted asA5MnSb2), giving access to a polar structure with a space group that is not present in any of the parent compounds.A5MnSb2is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although bothA5MnSb2andAMnSb2have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristineAMnSb2evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov–de Haas oscillations measurements.  more » « less
Award ID(s):
2210933 2011839 2211327 2039351
PAR ID:
10502676
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During the search for transition metal‐free alkyne hydrogenation catalysts, two new ternary Ca−Ga−Ge phases, Ca2Ga4Ge6(Cmc21, a=4.1600(10) Å, b=23.283(5) Å, c=10.789(3) Å) and Ca3Ga4Ge6(C2/m, a=24.063(2) Å, b=4.1987(4) Å, c=10.9794(9) Å, β=91.409(4)°), were discovered. These compounds are isostructural to the previously established Yb2Ga4Ge6and Yb3Ga4Ge6analogues, and according to Zintl‐Klemm counting rules, consist of anionic [Ga4Ge6]4−and [Ga4Ge6]6−frameworks in which every Ga and Ge atom would have a formal octet with no Ga−Ga or Ga−Ge π‐bonding. These compounds are metallic, based on temperature dependent electrical resistivity and thermopower measurements for Ca3Ga4Ge6, along with density functional theory calculations for both phases. Unlike the highly active 13‐layer trigonal CaGaGe phase, these new compounds exhibit minimal activity in the semi/full alkyne hydrogenation of phenylacetylene, which is consistent with previous observations that the lack of a formal octet for framework atoms is essential for catalysis in these Zintl‐Klemm compounds. 
    more » « less
  2. Abstract This study presents a thorough analysis of the electronic structures of the TaPxAs1−xseries of compounds, which are of significant interest due to their potential as topological materials. Using a combination of first principles and Wannier‐based tight‐binding methods, this study investigates both the bulk and surface electronic structures of the compounds for varying compositions (x = 0, 0.25, 0.50, 0.75, 1), with a focus on their topological properties. By using chirality analysis, (111) surface electronic structure analysis, and surface Fermi arcs analysis, it is established that the TaPxAs1−xcompounds exhibit topologically nontrivial behavior, characterized as Weyl semimetals (WSMs). The effect of spin–orbit coupling (SOC) on the topological properties of the compounds is further studied. In the absence of SOC, the compounds exhibit linearly dispersive fourfold degenerate points in the first Brillouin zone (FBZ) resembling Dirac semimetals. However, the introduction of SOC induces a phase transition to WSM states, with the number and position of Weyl points (WPs) varying depending on the composition of the alloy. For example, TaP has 12 WPs in the FBZ. The findings provide novel insights into the electronic properties of TaPxAs1−xcompounds and their potential implications for the development of topological materials for various technological applications. 
    more » « less
  3. Abstract Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of ans–d-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw–Rebbi formulation of QIs and HOFA states. Employing ab initio calculations, we demonstrate HOFAs in both the room- (α) and intermediate-temperature (α″) phases of Cd3As2, KMgBi, and rutile-structure ($$ \beta ^{\prime} $$ β -) PtO2
    more » « less
  4. Abstract Eu5Sn2As6is a Zintl phase crystalizing in the orthorhombic space groupPbamwith one‐dimensional chains of corner‐shared SnAs4tetrahedra running in thec‐direction. Eu5Sn2As6has an impressive room temperature Seebeck of >100 μV/K and < – 100 μV/K at 600 K crossing fromp‐ ton‐type at 650 K. The maximum thermoelectric figure of merit,zT, for Eu5Sn2As6is small (0.075), comparable to that of the Zintl phase Ca5Al2Sb6whose thermoelectric performance was improved by doping Na onto the Ca sites. In this study, we show that the thermoelectric properties of Eu5Sn2As6can be improved by substituting with K or La. The series Eu5‐xKxSn2As6provides an increase in maximumzTof 0.22 forx=0.15 due to a decrease resistivity while the onset of bipolar conduction systematically increases in temperature. Upon La substitution, Eu5‐xLaxSn2As6results in a newn‐type Zintl phase across the temperature range of 300–800 K. 
    more » « less
  5. Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10. 
    more » « less