skip to main content

Title: Influence of electrical field on the susceptibility of gallium nitride transistors to proton irradiation

Radiation susceptibility of electronic devices is commonly studied as a function of radiation energetics and device physics. Often overlooked is the presence or magnitude of the electrical field, which we hypothesize to play an influential role in low energy radiation. Accordingly, we present a comprehensive study of low-energy proton irradiation on gallium nitride high electron mobility transistors (HEMTs), turning the transistor ON or OFF during irradiation. Commercially available GaN HEMTs were exposed to 300 keV proton irradiation at fluences varying from 3.76 × 1012to 3.76 × 1014cm2, and the electrical performance was evaluated in terms of forward saturation current, transconductance, and threshold voltage. The results demonstrate that the presence of an electrical field makes it more susceptible to proton irradiation. The decrease of 12.4% in forward saturation and 19% in transconductance at the lowest fluence in ON mode suggests that both carrier density and mobility are reduced after irradiation. Additionally, a positive shift in threshold voltage (0.32 V and 0.09 V in ON and OFF mode, respectively) indicates the generation of acceptor-like traps due to proton bombardment. high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy analysis reveal significant defects introduction and atom intermixing near AlGaN/GaN interfaces and within the GaN layer after the highest irradiation dose employed in this study. According toin-situRaman spectroscopy, defects caused by irradiation can lead to a rise in self-heating and a considerable increase in (∼750 times) thermoelastic stress in the GaN layer during device operation. The findings indicate device engineering or electrical biasing protocol must be employed to compensate for radiation-induced defects formed during proton irradiation to improve device durability and reliability.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Medium: X Size: Article No. 295102
["Article No. 295102"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiation damage in electronic devices is known to be influenced by physics, design, and materials system. Here, we report the effects of biasing state (such as ON and OFF) and pre-existing damage in GaN high electron mobility transistors exposed to γ radiation. Controlled and accelerated DC biasing was used to prestress the devices, which showed significant degradation in device characteristics compared to pristine devices under ON and OFF states after γ irradiation. The experiment is performed in situ for the ON-state to investigate transient effects during irradiation until the total dose reaches 10 Mrad. It shows that threshold voltage, maximum transconductance, and leakage current initially decrease with dosage but slowly converge to a steady value at higher doses. After 10 Mrad irradiation, the OFF-state device demonstrates larger RON and one order of magnitude increased leakage current compared to the ON-state irradiated device. The micro-Raman study also confirms that the ON-state operation shows more radiation hardness than OFF and prestressed devices. Prestressed devices generate the highest threshold voltage shift from −2.85 to −2.49 V and two orders of magnitude higher leakage current with decreased saturation current after irradiation. These findings indicate that high electric fields during stressing can generate defects by modifying strain distribution, and higher defect density can not only create more charges during irradiation but also accelerate the diffusion process from the ionizing track to the nearest collector and consequently degrade device performances.

    more » « less
  2. Abstract

    While radiation is known to degrade AlGaN/GaN high-electron-mobility transistors (HEMTs), the question remains on the extent of damage governed by the presence of an electrical field in the device. In this study, we induced displacement damage in HEMTs in both ON and OFF states by irradiating with 2.8 MeV Au4+ion to fluence levels ranging from1.72×1010to3.745×1013ions cm−2, or 0.001–2 displacement per atom (dpa). Electrical measurement is donein situ, and high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray (EDX), geometrical phase analysis (GPA), and micro-Raman are performed on the highest fluence of Au4+irradiated devices. The selected heavy ion irradiation causes cascade damage in the passivation, AlGaN, and GaN layers and at all associated interfaces. After just 0.1 dpa, the current density in the ON-mode device deteriorates by two orders of magnitude, whereas the OFF-mode device totally ceases to operate. Moreover, six orders of magnitude increase in leakage current and loss of gate control over the 2-dimensional electron gas channel are observed. GPA and Raman analysis reveal strain relaxation after a 2 dpa damage level in devices. Significant defects and intermixing of atoms near AlGaN/GaN interfaces and GaN layer are found from HRTEM and EDX analyses, which can substantially alter device characteristics and result in complete failure.

    more » « less
  3. Thermal annealing is a widely used strategy to enhance semiconductor device performance. However, the process is complex for multi-material multi-layered semiconductor devices, where thermoelastic stresses from lattice constant and thermal expansion coefficient mismatch may create more defects than those annealed. We propose an alternate low temperature annealing technique, which utilizes the electron wind force (EWF) induced by small duty cycle high density pulsed current. To demonstrate its effectiveness, we intentionally degrade AlGaN/GaN high electron mobility transistors (HEMTs) with accelerated OFF-state stressing to increase ON-resistance ∼182.08% and reduce drain saturation current ∼85.82% of pristine condition at a gate voltage of 0 V. We then performed the EWF annealing to recover the corresponding values back to ∼122.21% and ∼93.10%, respectively. The peak transconductance, degraded to ∼76.58% of pristine at the drain voltage of 3 V, was also recovered back to ∼92.38%. This recovery of previously degraded transport properties is attributed to approximately 80% recovery of carrier mobility, which occurs during EWF annealing. We performed synchrotron differential aperture x-ray microscopy measurements to correlate these annealing effects with the lattice structural changes. We found a reduction of lattice plane spacing of (001) planes and stress within the GaN layer under the gate region after EWF annealing, suggesting a corresponding decrease in defect density. Application of this low-temperature annealing technique for in-operando recovery of degraded electronic devices is discussed.

    more » « less
  4. Strain plays an important role in the performance and reliability of AlGaN/GaN high electron mobility transistors (HEMTs). However, the impact of strain on the performance of proton irradiated GaN HEMTs is yet unknown. In this study, we investigated the effects of strain relaxation on the properties of proton irradiated AlGaN/GaN HEMTs. Controlled strain relief is achieved locally using the substrate micro-trench technique. The strain relieved devices experienced a relatively smaller increase of strain after 5 MeV proton irradiation at a fluence of 5 × 1014 cm−2 compared to the non-strain relieved devices, i.e., the pristine devices. After proton irradiation, both pristine and strain relieved devices demonstrate a reduction of drain saturation current (Ids,sat), maximum transconductance (Gm), carrier density (ns), and mobility (μn). Depending on the bias conditions the pristine devices exhibit up to 32% reduction of Ids,sat, 38% reduction of Gm, 15% reduction of ns, and 48% reduction of μn values. In contrast, the strain relieved devices show only up to 13% reduction of Ids,sat, 11% reduction of Gm, 9% reduction of ns, and 30% reduction of μn values. In addition, the locally strain relieved devices show smaller positive shift of threshold voltage compared to the pristine devices after proton irradiation. The less detrimental impact of proton irradiation on the transport properties of strain relieved devices could be attributed to reduced point defect density producing lower trap center densities, and evolution of lower operation related stresses due to lower initial residual strain.

    more » « less
  5. Radiation damage mitigation in electronics remains a challenge because the only established technique, thermal annealing, does not guarantee a favorable outcome. In this study, a non-thermal annealing technique is presented, where electron momentum from very short duration and high current density pulses is used to target and mobilize the defects. The technique is demonstrated on 60 Co gamma irradiated (5 × 10 6 rad dose and 180 × 10 3 rad h −1 dose rate) GaN high electron mobility transistors. The saturation current and maximum transconductance were fully and the threshold voltage was partially recovered at 30 °C or less. In comparison, thermal annealing at 300 °C mostly worsened the post-irradiation characteristics. Raman spectroscopy showed an increase in defects that reduce the 2-dimensional electron gas (2DEG) concentration and increase the carrier scattering. Since the electron momentum force is not applicable to the polymeric surface passivation, the proposed technique could not recover the gate leakage current, but performed better than thermal annealing. The findings of this study may benefit the mitigation of some forms of radiation damage in electronics that are difficult to achieve with thermal annealing. 
    more » « less