skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2015795

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Radiation susceptibility of electronic devices is commonly studied as a function of radiation energetics and device physics. Often overlooked is the presence or magnitude of the electrical field, which we hypothesize to play an influential role in low energy radiation. Accordingly, we present a comprehensive study of low-energy proton irradiation on gallium nitride high electron mobility transistors (HEMTs), turning the transistor ON or OFF during irradiation. Commercially available GaN HEMTs were exposed to 300 keV proton irradiation at fluences varying from 3.76 × 1012to 3.76 × 1014cm2, and the electrical performance was evaluated in terms of forward saturation current, transconductance, and threshold voltage. The results demonstrate that the presence of an electrical field makes it more susceptible to proton irradiation. The decrease of 12.4% in forward saturation and 19% in transconductance at the lowest fluence in ON mode suggests that both carrier density and mobility are reduced after irradiation. Additionally, a positive shift in threshold voltage (0.32 V and 0.09 V in ON and OFF mode, respectively) indicates the generation of acceptor-like traps due to proton bombardment. high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy analysis reveal significant defects introduction and atom intermixing near AlGaN/GaN interfaces and within the GaN layer after the highest irradiation dose employed in this study. According toin-situRaman spectroscopy, defects caused by irradiation can lead to a rise in self-heating and a considerable increase in (∼750 times) thermoelastic stress in the GaN layer during device operation. The findings indicate device engineering or electrical biasing protocol must be employed to compensate for radiation-induced defects formed during proton irradiation to improve device durability and reliability.

     
    more » « less
  2. Abstract

    Defect mitigation of electronic devices is conventionally achieved using thermal annealing. To mobilize the defects, very high temperatures are necessary. Since thermal diffusion is random in nature, the process may take a prolonged period of time. In contrast, we demonstrate a room temperature annealing technique that takes only a few seconds. The fundamental mechanism is defect mobilization by atomic scale mechanical force originating from very high current density but low duty cycle electrical pulses. The high-energy electrons lose their momentum upon collision with the defects, yet the low duty cycle suppresses any heat accumulation to keep the temperature ambient. For a 7 × 105A cm−2pulsed current, we report an approximately 26% reduction in specific on-resistance, a 50% increase of the rectification ratio with a lower ideality factor, and reverse leakage current for as-fabricated vertical geometry GaN p–n diodes. We characterize the microscopic defect density of the devices before and after the room temperature processing to explain the improvement in the electrical characteristics. Raman analysis reveals an improvement in the crystallinity of the GaN layer and an approximately 40% relaxation of any post-fabrication residual strain compared to the as-received sample. Cross-sectional transmission electron microscopy (TEM) images and geometric phase analysis results of high-resolution TEM images further confirm the effectiveness of the proposed room temperature annealing technique to mitigate defects in the device. No detrimental effect, such as diffusion and/or segregation of elements, is observed as a result of applying a high-density pulsed current, as confirmed by energy dispersive x-ray spectroscopy mapping.

     
    more » « less
  3. Abstract

    While radiation is known to degrade AlGaN/GaN high-electron-mobility transistors (HEMTs), the question remains on the extent of damage governed by the presence of an electrical field in the device. In this study, we induced displacement damage in HEMTs in both ON and OFF states by irradiating with 2.8 MeV Au4+ion to fluence levels ranging from1.72×1010to3.745×1013ions cm−2, or 0.001–2 displacement per atom (dpa). Electrical measurement is donein situ, and high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray (EDX), geometrical phase analysis (GPA), and micro-Raman are performed on the highest fluence of Au4+irradiated devices. The selected heavy ion irradiation causes cascade damage in the passivation, AlGaN, and GaN layers and at all associated interfaces. After just 0.1 dpa, the current density in the ON-mode device deteriorates by two orders of magnitude, whereas the OFF-mode device totally ceases to operate. Moreover, six orders of magnitude increase in leakage current and loss of gate control over the 2-dimensional electron gas channel are observed. GPA and Raman analysis reveal strain relaxation after a 2 dpa damage level in devices. Significant defects and intermixing of atoms near AlGaN/GaN interfaces and GaN layer are found from HRTEM and EDX analyses, which can substantially alter device characteristics and result in complete failure.

     
    more » « less
  4. High-power electronics, such as GaN high electron mobility transistors (HEMTs), are expected to perform reliably in high-temperature conditions. This study aims to gain an understanding of the microscopic origin of both material and device vulnerabilities to high temperatures by real-time monitoring of the onset of structural degradation under varying temperature conditions. This is achieved by operating GaN HEMT devices in situ inside a transmission electron microscope (TEM). Electron-transparent specimens are prepared from a bulk device and heated up to 800 °C. High-resolution TEM (HRTEM), scanning TEM (STEM), energy-dispersive x-ray spectroscopy (EDS), and geometric phase analysis (GPA) are performed to evaluate crystal quality, material diffusion, and strain propagation in the sample before and after heating. Gate contact area reduction is visible from 470 °C accompanied by Ni/Au intermixing near the gate/AlGaN interface. Elevated temperatures induce significant out-of-plane lattice expansion at the SiNx/GaN/AlGaN interface, as revealed by geometry-phase GPA strain maps, while in-plane strains remain relatively consistent. Exposure to temperatures exceeding 500 °C leads to almost two orders of magnitude increase in leakage current in bulk devices in this study, which complements the results from our TEM experiment. The findings of this study offer real-time visual insights into identifying the initial location of degradation and highlight the impact of temperature on the bulk device’s structure, electrical properties, and material degradation.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  5. Thermal annealing is a widely used strategy to enhance semiconductor device performance. However, the process is complex for multi-material multi-layered semiconductor devices, where thermoelastic stresses from lattice constant and thermal expansion coefficient mismatch may create more defects than those annealed. We propose an alternate low temperature annealing technique, which utilizes the electron wind force (EWF) induced by small duty cycle high density pulsed current. To demonstrate its effectiveness, we intentionally degrade AlGaN/GaN high electron mobility transistors (HEMTs) with accelerated OFF-state stressing to increase ON-resistance ∼182.08% and reduce drain saturation current ∼85.82% of pristine condition at a gate voltage of 0 V. We then performed the EWF annealing to recover the corresponding values back to ∼122.21% and ∼93.10%, respectively. The peak transconductance, degraded to ∼76.58% of pristine at the drain voltage of 3 V, was also recovered back to ∼92.38%. This recovery of previously degraded transport properties is attributed to approximately 80% recovery of carrier mobility, which occurs during EWF annealing. We performed synchrotron differential aperture x-ray microscopy measurements to correlate these annealing effects with the lattice structural changes. We found a reduction of lattice plane spacing of (001) planes and stress within the GaN layer under the gate region after EWF annealing, suggesting a corresponding decrease in defect density. Application of this low-temperature annealing technique for in-operando recovery of degraded electronic devices is discussed.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  6. Strain plays an important role in the performance and reliability of AlGaN/GaN high electron mobility transistors (HEMTs). However, the impact of strain on the performance of proton irradiated GaN HEMTs is yet unknown. In this study, we investigated the effects of strain relaxation on the properties of proton irradiated AlGaN/GaN HEMTs. Controlled strain relief is achieved locally using the substrate micro-trench technique. The strain relieved devices experienced a relatively smaller increase of strain after 5 MeV proton irradiation at a fluence of 5 × 1014 cm−2 compared to the non-strain relieved devices, i.e., the pristine devices. After proton irradiation, both pristine and strain relieved devices demonstrate a reduction of drain saturation current (Ids,sat), maximum transconductance (Gm), carrier density (ns), and mobility (μn). Depending on the bias conditions the pristine devices exhibit up to 32% reduction of Ids,sat, 38% reduction of Gm, 15% reduction of ns, and 48% reduction of μn values. In contrast, the strain relieved devices show only up to 13% reduction of Ids,sat, 11% reduction of Gm, 9% reduction of ns, and 30% reduction of μn values. In addition, the locally strain relieved devices show smaller positive shift of threshold voltage compared to the pristine devices after proton irradiation. The less detrimental impact of proton irradiation on the transport properties of strain relieved devices could be attributed to reduced point defect density producing lower trap center densities, and evolution of lower operation related stresses due to lower initial residual strain.

     
    more » « less
    Free, publicly-accessible full text available December 14, 2024
  7. The study investigates the mitigation of radiation damage on p‐type SnO thin‐film transistors (TFTs) with a fast, room‐temperature annealing process. Atomic layer deposition is utilized to fabricate bottom‐gate TFTs of high‐quality p‐type SnO layers. After 2.8 MeV Au4+irradiation at a fluence level of 5.2 × 1012 ions cm−2, the output drain current and on/off current ratio (Ion/Ioff) decrease by more than one order of magnitude, field‐effect mobility (μFE) reduces more than four times, and subthreshold swing (SS) increases more than four times along with a negative shift in threshold voltage. The observed degradation is attributed to increased surface roughness and defect density, as confirmed by scanning electron microscopy (SEM), high‐resolution micro‐Raman, and transmission electron microscopy (TEM) with geometric phase analysis (GPA). A technique is demonstrated to recover the device performance at room temperature and in less than a minute, using the electron wind force (EWF) obtained from low‐duty‐cycle high‐density pulsed current. At a pulsed current density of 4.0 × 105 A cm−2, approximately four times increase inIon/Ioffis observed, 41% increase inμFE, and 20% decrease in the SS of the irradiated TFTs, suggesting effectiveness of the new annealing technique.

     
    more » « less
  8. Radiation susceptibility of electronics has always been about probing electrical properties in either transient or time-accumulated phenomena. As the size and complexity of electronic chips or systems increase, detection of the most vulnerable regions becomes more time consuming and challenging. In this study, we hypothesize that localized mechanical stress, if overlapping electrically sensitive regions, can make electronic devices more susceptible to radiation. Accordingly, we develop an indirect technique to map mechanical and electrical hotspots to identify radiation-susceptible regions of the operational amplifier AD844 to ionizing radiation. Mechanical susceptibility is measured using pulsed thermal phase analysis via lock-in thermography and electrical biasing is used to identify electrically relevant regions. A composite score of electrical and mechanical sensitivity was constructed to serve as a metric for ionizing radiation susceptibility. Experimental results, compared against the literature, indicate effectiveness of the new technique in the rapid detection of radiation-vulnerable regions. The findings could be attractive for larger systems, for which traditional analysis would take —two to three orders of magnitude more time to complete. However, the indirect nature of the technique makes the study more approximate and in need for more consistency and validation efforts.

     
    more » « less
  9. The wide bandgap semiconductors SiC and GaN are commercialized for power electronics and for visible to UV light-emitting diodes in the case of the GaN/InGaN/AlGaN materials system. For power electronics applications, SiC MOSFETs (metal–oxide–semiconductor field effect transistors) and rectifiers and GaN/AlGaN HEMTs and vertical rectifiers provide more efficient switching at high-power levels than do Si devices and are now being used in electric vehicles and their charging infrastructure. These devices also have applications in more electric aircraft and space missions where high temperatures and extreme environments are involved. In this review, their inherent radiation hardness, defined as the tolerance to total doses, is compared to Si devices. This is higher for the wide bandgap semiconductors, due in part to their larger threshold energies for creating defects (atomic bond strength) and more importantly due to their high rates of defect recombination. However, it is now increasingly recognized that heavy-ion-induced catastrophic single-event burnout in SiC and GaN power devices commonly occurs at voltages ∼50% of the rated values. The onset of ion-induced leakage occurs above critical power dissipation within the epitaxial regions at high linear energy transfer rates and high applied biases. The amount of power dissipated along the ion track determines the extent of the leakage current degradation. The net result is the carriers produced along the ion track undergo impact ionization and thermal runaway. Light-emitting devices do not suffer from this mechanism since they are forward-biased. Strain has also recently been identified as a parameter that affects radiation susceptibility of the wide bandgap devices.

     
    more » « less