skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spontaneous locomotion of a symmetric squirmer
The squirmer is a popular model to analyse the fluid mechanics of a self-propelled object, such as a micro-organism. We demonstrate that some fore–aft symmetric squirmers can spontaneously self-propel above a critical Reynolds number. Specifically, we numerically study the effects of inertia on spherical squirmers characterised by an axially and fore–aft symmetric ‘quadrupolar’ distribution of surface-slip velocity; under creeping-flow conditions, such squirmers generate a pure stresslet flow, the stresslet sign classifying the squirmer as either a ‘pusher’ or ‘puller’. Assuming axial symmetry, and over the examined range of the Reynolds number$$Re$$(defined based upon the magnitude of the quadrupolar squirming), we find that spontaneous symmetry breaking occurs in the puller case above$$Re \approx 14.3$$, with steady swimming emerging from that threshold consistently with a supercritical pitchfork bifurcation and with the swimming speed growing monotonically with$$Re$$.  more » « less
Award ID(s):
2002120
PAR ID:
10502834
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
983
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flow dynamics around a stationary flat plate near a free surface is investigated using time-resolved two-dimensional particle image velocimetry. The study examines variations in angle of attack ($$\theta =0^\circ {-}35^\circ {}$$), Reynolds number ($$Re$$$$\approx$$$$10^3$$$$-$$3$$\times$$$$10^4$$) and plate proximity to the free surface ($$H^*$$). Under symmetric boundary conditions ($$H^*\geqslant {15}$$), increasing$$\theta$$intensifies fluid–plate interaction, resulting in the shedding of leading-edge and trailing-edge vortices (LEV and TEV), each characterised by distinct strengths and sizes. In both symmetric ($$H^*\geqslant {15}$$) and asymmetric ($$H^*=5$$) boundary conditions at$$\theta \lt 5^\circ {}$$, fluid flow follows the contour of the plate, unaffected by Reynolds number. However, at$$H^*=5$$, three flow regimes emerge: the first Coanda effect (CI), regular shedding (RS) and the second Coanda effect (CII), each influenced by$$\theta$$and$$Re$$. The CI regime dominates at lower angles ($$5^\circ {}\leqslant \theta \leqslant 25^\circ {}$$) and$$Re \leqslant 12\,500$$, featuring a Coanda-induced jet-like flow pattern. As the Reynolds number increases, the flow transitions into the RS regime, leading to detachment from the upper surface of the plate. This detachment results in the formation of LEV and TEV in the wake, along with surface deformation, secondary vortices and wavy shear layers beneath the free surface. At$$22\,360\lt Re \leqslant 32\,200$$and$$5^\circ {} \leqslant \theta \leqslant 25^\circ {}$$, in the CII regime, significant surface deformation causes the Coanda effect to reattach the flow to the plate, forming a unique jet-like flow. 
    more » « less
  2. The hydrodynamics of a self-propelling swimmer undergoing intermittent S-start swimming are investigated extensively with varying duty cycle$$DC$$, swimming period$$T$$, and tailbeat amplitude$$A$$. We find that the steady time-averaged swimming speed$$\bar {U}_x$$increases directly with$$A$$, but varies inversely with$$DC$$and$$T$$, where there is a maximal improvement of$$541.29\,\%$$over continuous cruising swimming. Our results reveal two scaling laws, in the form of input versus output relations, that relate the swimmer's kinematics to its hydrodynamic performance: swimming speed and efficiency. A smaller$$DC$$causes increased fluctuations in the swimmer's velocity generation. A larger$$A$$, on the other hand, allows the swimmer to reach steady swimming more quickly. Although we set out to determine scaling laws for intermittent S-start swimming, these scaling laws extend naturally to burst-and-coast and continuous modes of swimming. Additionally, we have identified, categorized and linked the wake structures produced by intermittent S-start swimmers with their velocity generation. 
    more » « less
  3. The wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number$$Re=u_{\infty }D/\nu =5000$$is investigated via a direct numerical simulation. The study is focused on identification of coherent vortical motions and the dominant frequencies in this flow. Three dominant coherent motions are identified in the wake: the vortex shedding motion with the frequency of$$St=fD/u_{\infty }=0.27$$, the bubble pumping motion with$$St=0.02$$, and the very-low-frequency (VLF) motion originated in the very near wake of the body with the frequency$$St=0.002$$–$$0.005$$. The vortex shedding pattern is demonstrated to follow a reflectional symmetry breaking mode, whereas the vortex loops are shed alternatingly from each side of the vortex shedding plane, but are subsequently twisted and tangled, giving the resulting wake structure a helical spiraling pattern. The bubble pumping motion is confined to the recirculation region and is a result of a Görtler instability. The VLF motion is related to a stochastic destabilisation of a steady symmetric mode in the near wake and manifests itself as a slow, precessional motion of the wake barycentre. The VLF mode with$$St=0.005$$is also detectable in the intermediate wake and may be associated with a low-frequency radial flapping of the shear layer. 
    more » « less
  4. Free surface flows driven by boundary undulations are observed in many biological phenomena, including the feeding and locomotion of water snails. To simulate the feeding strategy of apple snails, we develop a centimetric robotic undulator that drives a thin viscous film of liquid with the wave speed$$V_w$$. Our experimental results demonstrate that the behaviour of the net fluid flux$$Q$$strongly depends on the Reynolds number$$Re$$. Specifically, in the limit of vanishing$$Re$$, we observe that$$Q$$varies non-monotonically with$$V_w$$, which has been successfully rationalised by Pandeyet al.(Nat. Commun., vol. 14, no. 1, 2023, p. 7735) with the lubrication model. By contrast, in the regime of finite inertia ($${Re} \sim O(1)$$), the fluid flux continues to increase with$$V_w$$and completely deviates from the prediction of lubrication theory. To explain the inertia-enhanced pumping rate, we build a thin-film, two-dimensional model via the asymptotic expansion in which we linearise the effects of inertia. Our model results match the experimental data with no fitting parameters and also show the connection to the corresponding free surface shapes$$h_2$$. Going beyond the experimental data, we derive analytical expressions of$$Q$$and$$h_2$$, which allow us to decouple the effects of inertia, gravity, viscosity and surface tension on free surface pumping over a wide range of parameter space. 
    more » « less
  5. Large-eddy simulation was used to model turbulent atmospheric surface layer (ASL) flow over canopies composed of streamwise-aligned rows of synthetic trees of height,$$h$$, and systematically arranged to quantify the response to variable streamwise spacing,$$\delta _1$$, and spanwise spacing,$$\delta _2$$, between adjacent trees. The response to spanwise and streamwise heterogeneity has, indeed, been the topic of a sustained research effort: the former resulting in formation of Reynolds-averaged counter-rotating secondary cells, the latter associated with the$$k$$- and$$d$$-type response. No study has addressed the confluence of both, and results herein show secondary flow polarity reversal across ‘critical’ values of$$\delta _1$$and$$\delta _2$$. For$$\delta _2/\delta \lesssim 1$$and$$\gtrsim 2$$, where$$\delta$$is the flow depth, the counter-rotating secondary cells are aligned such that upwelling and downwelling, respectively, occurs above the elements. The streamwise spacing$$\delta _1$$regulates this transition, with secondary cell reversal occurring first for the largest$$k$$-type cases, as elevated turbulence production within the canopy necessitates entrainment of fluid from aloft. The results are interpreted through the lens of a benchmark prognostic closure for effective aerodynamic roughness,$$z_{0,{Eff.}} = \alpha \sigma _h$$, where$$\alpha$$is a proportionality constant and$$\sigma _h$$is height root mean square. We report$$\alpha \approx 10^{-1}$$, the value reported over many decades for a broad range of rough surfaces, for$$k$$-type cases at small$$\delta _2$$, whereas the transition to$$d$$-type arrangements necessitates larger$$\delta _2$$. Though preliminary, results highlight the non-trivial response to variation of streamwise and spanwise spacing. 
    more » « less