Electrode architectures significantly influence the electrochemical performance, flexibility, and applications of lithium‐ion batteries (LiBs). However, the conventional bar coating for fabricating electrodes limits the addition of customized architecture or patterns. In this study, as a novel approach, patterns are integrated into electrodes through large‐scale roll‐to‐roll (R2R) flexographic printing. Additionally, flexible, recyclable, and biodegradable paper are innovatively used as a printing substrate during printing LiBs manufacturing, which exhibited superior printability. Moreover, the paper is modified with a thin‐layer Al2O3to function as the separator in the printed LiB. The Al2O3‐coated paper enables an admirable wettability for printing, excellent mechanical properties for high‐speed R2R manufacturing, and outstanding thermal stability for the safe and stable operation of LiBs. The assembled paper cells exhibit nearly 100% discharge capacity retention after 1000 cycles at 3 C and outstanding rate performance. This work inspires future large‐scale microbatteries manufacturing integrated with high‐resolution architecture designs.
This content will become publicly available on January 1, 2025
Cold sintering enabled the upcycling of polypropylene with gypsum (CaSO4) into a fully recyclable composite, paving the way for the integration of waste into high-performance, recyclable composites.
more » « less- Award ID(s):
- 2134643
- PAR ID:
- 10502864
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Materials Horizons
- ISSN:
- 2051-6347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Chemically recyclable polymers offer a promising solution to address the issues associated with the unsustainable use of plastics by converting the traditional linear plastic economy into a circular one. Central to developing chemically recyclable polymers is to identify the appropriate monomers that enable practical conditions for polymerization and depolymerization and ensure useful stability and material properties. Our group has recently demonstrated that
trans ‐cyclobutane‐fused cyclooctene (t CBCO) meets the abovementioned requirements and is a promising candidate for developing chemically recyclable polymers. Herein, encouraged by the success witht CBCO, we investigate the thermodynamics of polymerization of a relevant system,trans ‐benzocyclobutene‐fused‐cyclooctene, which can be viewed ast CBCO with an additional benzene ring. The study shows that introducing an additional benzene ring favors polymerization and disfavors depolymerization, and the effect is predominantly entropic. The benzo‐effect can be leveraged to fine‐tune the thermodynamics of polymerization and depolymerization to facilitate the chemical recycling of polymers. -
Abstract Construction of robust, stereocomplexed (sc) crystalline material, based on a recently discovered infinitely recyclable polymer system, requires blending of enantiomeric polymer chains produced from respective enantiopure, fused six‐five bicyclic lactones. Herein, the stereoselective polymerization of the racemic monomer by yttrium catalysts bearing tetradentate ligands is reported, where the tethered donor sidearm switches the heteroselectivity of the catalyst to isoselectivity when it is changed from the β‐OMe to β‐NMe2sidearm. The latter catalyst produces an isotactic stereoblock polymer (
P mup to 0.95) that forms the crystalline sc‐material with aT mof up to 171 °C. This sc‐material can be fully depolymerized back to rac‐monomer in a quantitative yield and purity, thus establishing its circular life cycle. -
Abstract Construction of robust, stereocomplexed (sc) crystalline material, based on a recently discovered infinitely recyclable polymer system, requires blending of enantiomeric polymer chains produced from respective enantiopure, fused six‐five bicyclic lactones. Herein, the stereoselective polymerization of the racemic monomer by yttrium catalysts bearing tetradentate ligands is reported, where the tethered donor sidearm switches the heteroselectivity of the catalyst to isoselectivity when it is changed from the β‐OMe to β‐NMe2sidearm. The latter catalyst produces an isotactic stereoblock polymer (
P mup to 0.95) that forms the crystalline sc‐material with aT mof up to 171 °C. This sc‐material can be fully depolymerized back to rac‐monomer in a quantitative yield and purity, thus establishing its circular life cycle. -
Abstract Through advances in molecular design, understanding of processing parameters, and development of non‐traditional device fabrication techniques, the field of wearable and implantable skin‐inspired devices is rapidly growing interest in the consumer market. Like previous technological advances, economic growth and efficiency is anticipated, as these devices will enable an augmented level of interaction between humans and the environment. However, the parallel growing electronic waste that is yet to be addressed has already left an adverse impact on the environment and human health. Looking forward, it is imperative to develop both human‐ and environmentally‐friendly electronics, which are contingent on emerging recyclable, biodegradable, and biocompatible polymer technologies. This review provides definitions for recyclable, biodegradable, and biocompatible polymers based on reported literature, an overview of the analytical techniques used to characterize mechanical and chemical property changes, and standard policies for real‐life applications. Then, various strategies in designing the next‐generation of polymers to be recyclable, biodegradable, or biocompatible with enhanced functionalities relative to traditional or commercial polymers are discussed. Finally, electronics that exhibit an element of recyclability, biodegradability, or biocompatibility with new molecular design are highlighted with the anticipation of integrating emerging polymer chemistries into future electronic devices.