skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Denial of service attacks in edge computing layers: Taxonomy, vulnerabilities, threats and solutions
Edge computing has emerged as the dominant communication technology connecting IoT and cloud, offering reduced latency and harnessing the potential of edge devices. However, its widespread adoption has also introduced various security vulnerabilities, similar to any nascent technology. One notable threat is the denial of service (DoS) attack, including its distributed form, the distributed denial of service (DDoS) attack, which is the primary focus of this research. This paper aims to explore the impact of different types of DoS and DDoS attacks on edge computing layers by examining the vulnerabilities associated with various edge peripherals. Addition ally, existing detection and prevention mechanisms are investigated to address these weaknesses. Furthermore, a theoretical architecture is proposed to mitigate distributed denial of service attacks targeting edge systems. By comprehensively analyzing and addressing the security concerns related to DoS and DDoS attacks in edge computing, this research aims to contribute to the development of robust and secure edge computing systems.  more » « less
Award ID(s):
2028397
PAR ID:
10503198
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Ad hoc networks
ISSN:
1570-8705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the proliferation of smart and connected mobile, wireless devices at the edge, Distributed Denial of Service (DDoS) attacks are increasing. Weak security, improper commissioning, and the fast, non-standardized growth of the IoT industry are the major contributors to the recent DDoS attacks, e.g., Mirai Botnet attack on Dyn and Memcached attack on GitHub. Similar to UDP/TCP flooding (common DDoS attack vector), request flooding attack is the primary DDoS vulnerability in the Named-Data Networking (NDN) architecture.In this paper, we propose PERSIA, a distributed request flooding prevention and mitigation framework for NDN-enabled ISPs, to ward-off attacks at the edge. PERSIA's edge-centric attack prevention mechanism eliminates the possibility of successful attacks from malicious end hosts. In the presence of compromised infrastructure (routers), PERSIA dynamically deploys an in-network mitigation strategy to minimize the attack's magnitude. Our experimentation demonstrates PERSIA's resiliency and effectiveness in preventing and mitigating DDoS attacks while maintaining legitimate users' quality of experience (> 99.92% successful packet delivery rate). 
    more » « less
  2. The Unmanned aerial vehicles (UAVs) sector is fast-expanding. Protection of real-time UAV applications against malicious attacks has become an urgent problem that needs to be solved. Denial-of-service (DoS) attack aims to exhaust system resources and cause important tasks to miss deadlines. DoS attack may be one of the common problems of UAV systems, due to its simple implementation. In this paper, we present a software framework that offers DoS attack-resilient control for real-time UAV systems using containers: Container Drone. The framework provides defense mechanisms for three critical system resources: CPU, memory, and communication channel. We restrict the attacker's access to the CPU core set and utilization. Memory bandwidth throttling limits the attacker's memory usage. By simulating sensors and drivers in the container, a security monitor constantly checks DoS attacks over communication channels. Upon the detection of a security rule violation, the framework switches to the safety controller to mitigate the attack. We implemented a prototype quadcopter with commercially off-the-shelf (COTS) hardware and open-source software. Our experimental results demonstrated the effectiveness of the proposed framework defending against various DoS attacks. 
    more » « less
  3. The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems. 
    more » « less
  4. A Distributed Denial of Service (DDoS) attack is an attempt to make an online service, a network, or even an entire organization, unavailable by saturating it with traffic from multiple sources. DDoS attacks are among the most common and most devastating threats that network defenders have to watch out for. DDoS attacks are becoming bigger, more frequent, and more sophisticated. Volumetric attacks are the most common types of DDoS attacks. A DDoS attack is considered volumetric, or high-rate, when within a short period of time it generates a large amount of packets or a high volume of traffic. High-rate attacks are well-known and have received much attention in the past decade; however, despite several detection and mitigation strategies have been designed and implemented, high-rate attacks are still halting the normal operation of information technology infrastructures across the Internet when the protection mechanisms are not able to cope with the aggregated capacity that the perpetrators have put together. With this in mind, the present paper aims to propose and test a distributed and collaborative architecture for online high-rate DDoS attack detection and mitigation based on an in-memory distributed graph data structure and unsupervised machine learning algorithms that leverage real-time streaming data and analytics. We have successfully tested our proposed mechanism using a real-world DDoS attack dataset at its original rate in pursuance of reproducing the conditions of an actual large scale attack. 
    more » « less
  5. State-of-the-art System-on-Chip (SoC) designs consist of many Intellectual Property (IP) cores that interact using a Network-on-Chip (NoC) architecture. SoC designers increasingly rely on global supply chains for obtaining third-party IPs. In addition to inherent vulnerabilities associated with utilizing third-party IPs, NoC based SoCs enable attackers to exploit the distributed nature of NoC and its connectivity with various IPs to launch a plethora of attacks. Specifically, Denial-of-Service (DoS) attacks pose a serious threat in degrading the SoC performance by flooding the NoC with unnecessary packets. In this paper, we present a machine learning-based runtime monitoring mechanism to detect DoS attacks. The models are statically trained and used for runtime attack detection leading to minimum runtime performance overhead. Our approach is capable of detecting DoS attacks with high accuracy, even in the presence of unpredictable NoC traffic patterns caused by various application mappings. We extensively explore machine learning models and features to provide a comprehensive study on how to use machine learning for DoS attack detection in NoC-based SoCs. 
    more » « less