Crystal structures document the ability of a TF3group (T=Si, Ge, Sn, Pb) situated on a naphthalene system to engage in an intramolecular tetrel bond (TB) with an amino group on the adjoining ring.
This content will become publicly available on March 25, 2025
As a flat trigonal species, the CR3+carbenium ion contains a pair of deep π‐holes above and below its molecular plane. In the case of CH3+a first base will form a covalent bond with the central C, making the combined species tetrahedral. Approach of a second base to the opposite side results in a longer but rather strong noncovalent tetrel bond (TB). While CMe3+can also form a similar asymmetric complex with a pair of bases, it also has the capacity to form a pair of nearly equivalent TBs, such that the resulting symmetric trigonal bipyramid configuration is only slightly higher in energy. When the three substituents on the central C are phenyl rings, the symmetric configuration with two TBs predominates. These tetrel bonds are quite strong, reaching up to 20 kcal/mol. Adding OPH2or OCH substituents to the phenyl rings permits the formation of intramolecular C⋅⋅O TBs to the central C, very similar in many respects to the case where these TBs are intermolecular.
more » « less- Award ID(s):
- 1954310
- PAR ID:
- 10503235
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- ISSN:
- 1439-4235
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Ab initio calculations evaluate the strength of this bond and evaluate whether it can influence the ability of the T atom to engage in a second, intermolecular TB with another nucleophile. A very strong CN−anionic base can approach the T either along the extension of a T−C or T−F bond and form a strong TB with an interaction energy approaching 100 kcal/mol, although this bond is weakened a bit by the presence of the internal T⋅⋅⋅N bond. The much less potent NCH base engages in a correspondingly longer and weaker TB, less than 10 kcal/mol. Such an intermolecular TB is weakened by the presence of the internal TB, to the point that it only occurs for the two heavier tetrel atoms Sn and Pb. -
null (Ed.)The tetrel bond (TB) recruits an element drawn from the C, Si, Ge, Sn, Pb family as electron acceptor in an interaction with a partner Lewis base. The underlying principles that explain this attractive interaction are described in terms of occupied and vacant orbitals, total electron density, and electrostatic potential. These principles facilitate a delineation of the factors that feed into a strong TB. The geometric deformation that occurs within the tetrel-bearing Lewis acid monomer is a particularly important issue, with both primary and secondary effects. As a first-row atom of low polarizability, C is a reluctant participant in TBs, but its preponderance in organic and biochemistry make it extremely important that its potential in this regard be thoroughly understood. The IR and NMR manifestations of tetrel bonding are explored as spectroscopy offers a bridge to experimental examination of this phenomenon. In addition to the most common σ-hole type TBs, discussion is provided of π-hole interactions which are a result of a common alternate covalent bonding pattern of tetrel atoms.more » « less
-
The possibility of the transfer of the TH 3 group across a tetrel bond is considered by ab initio calculations. The TB is constructed by pairing PhTH 3 (Ph = phenyl; T = Si and Ge) with bases NH 3 , NHCH 2 , and the C 3 N 2 H 4 carbene. The TH 3 moves toward the base but only by a small amount in these dimers. However, when a Be 2+ or Mg 2+ dication is placed above the phenyl ring, the tetrel bond strength is greatly magnified reaching up to nearly 100 kcal mol −1 . This dication also induces a much higher degree of transfer which can be best categorized as half-transfer for the two N-bases and a near complete transfer for the carbene.more » « less
-
Abstract The lone pair of the N atom is a common electron donor in noncovalent bonds. Quantum calculations examine how various aspects of the base on which the N is located affect the strength and other properties of complexes formed with Lewis acids FH, FBr, F2Se, and F3As that respectively encompass hydrogen, halogen, chalcogen, and pnicogen bonds. In most cases the halogen bond is the strongest, followed in order by chalcogen, hydrogen, and pnicogen. The noncovalent bond strength increases in the sp
2 3order of hybridization of N. Replacement of H substituents on the base by a methyl group or substituting N by C atom to which the base N is attached, strengthens the bond. The strongest bonds occur for trimethylamine and the weakest for N2. -
Abstract The T⋅⋅⋅N tetrel bond (TB) formed between TX3OH (T=C, Si, Ge; X=H, F) and the Lewis base N≡CM (M=H, Li, Na) is studied by ab initio calculations at the MP2/aug‐cc‐pVTZ level. Complexes involving TH3OH contain a conventional TB with interaction energy less than 10 kcal/mol. This bond is substantially strengthened, approaching 35 kcal/mol and covalent character, when fluorosubstituted TF3OH is combined with NCLi or NCNa. Along with this enhanced binding comes a near equalization of the TB T⋅⋅⋅N and the internal T−O bond lengths, and the associated structure acquires a trigonal bipyramidal shape, despite a high internal deformation energy. This structural transformation becomes more complete, and the TB is further strengthened upon adding an electron acceptor BeCl2to the Lewis acid and a base to the NCM unit. This same TB strengthening can be accomplished also by imposition of an external electric field.