skip to main content

This content will become publicly available on May 1, 2025

Title: Joint Compute-Caching-Communication Control for Online Data-Intensive Service Delivery
Data-intensive augmented information (AgI) services (e.g., metaverse applications such as virtual/augmented reality), designed to deliver highly interactive experiences resulting from the real-time combination of live data-streams and pre-stored digital content, are accelerating the need for distributed compute platforms with unprecedented storage, computation, and communication requirements. To this end, the integrated evolution of next-generation networks (5G/6G) and distributed cloud technologies (mobile/edge/cloud computing) have emerged as a promising paradigm to address the interaction- and resource-intensive nature of data-intensive AgI services. In this paper, we focus on the design of control policies for the joint orchestration of compute, caching, and communication (3C) resources in next-generation 3C networks for the delivery of data-intensive AgI services. We design the first throughput-optimal control policy that coordinates joint decisions around (i) routing paths and processing locations for live data streams, with (ii) cache selection and distribution paths for associated data objects. We then extend the proposed solution to include a max-throughput data placement policy and two efficient replacement policies. Numerical results demonstrate the superior performance obtained via the novel multi-pipeline flow control and 3C resource orchestration mechanisms of the proposed policy, compared with state-of-the-art algorithms that lack full 3C integrated control.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
IEEE Transactions on Mobile Computing
Page Range / eLocation ID:
4617 to 4633
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Next-generation distributed computing networks (e.g., edge and fog computing) enable the efficient delivery of delay-sensitive, compute-intensive applications by facilitating access to computation resources in close proximity to end users. Many of these applications (e.g., augmented/virtual reality) are also data-intensive: in addition to user-specific (live) data streams, they require access to shared (static) digital objects (e.g., im-age database) to complete the required processing tasks. When required objects are not available at the servers hosting the associated service functions, they must be fetched from other edge locations, incurring additional communication cost and latency. In such settings, overall service delivery performance shall benefit from jointly optimized decisions around (i) routing paths and processing locations for live data streams, together with (ii) cache selection and distribution paths for associated digital objects. In this paper, we address the problem of dynamic control of data-intensive services over edge cloud networks. We characterize the network stability region and design the first throughput-optimal control policy that coordinates processing and routing decisions for both live and static data-streams. Numerical results demonstrate the superior performance (e.g., throughput, delay, and resource consumption) obtained via the novel multi-pipeline flow control mechanism of the proposed policy, compared with state-of-the-art algorithms that lack integrated stream processing and data distribution control. 
    more » « less
  2. The confluence of advanced networking (5G/6G) and distributed cloud technologies (edge/fog computing) are rapidly transforming next-generation networks into highly distributed computation platforms, especially suited to host emerging resource-intensive and latency-sensitive services (e.g., smart transportation/city/factory, real-time computer vision, augmented reality). In this paper, we leverage the recently proposed Cloud Network Flow (CNF) modeling and optimization framework to design a novel two-timescale orchestration system for the joint control of communication and computation resources in cloud-integrated networks. The Long-Term Controller solves a properly constructed CNF optimization problem at a longer timescale that determines i) the end-to-end CNF routes (defining data paths and processing locations) for each service chain and ii) the associated allocation of communication and computation resources. The Short-Term Controller uses a local control policy to adjust the allocation of communication and computation resources based on queue state observations at a shorter timescale. Driven by the lack of proper simulation tools, we also develop new ns-3 features that allow modeling and simulation of cloud-integrated networks equipped with both communication and computation resources hosting arbitrary service chains. Finally, we integrate the proposed orchestration system into ns-3 to evaluate and analyze the dynamic orchestration of a set of representative service chains over a hierarchical cloud-integrated network. 
    more » « less
  3. The worlds of computing, communication, and storage have for a long time been treated separately, and even the recent trends of cloud computing, distributed computing, and mobile edge computing have not funda-mentally changed the role of networks, still designed to move data between end users and pre-determined compu-tation nodes, without true optimization of the end-to-end compute-communication process. However, the emergence of Metaverse applications, where users consume multime-dia experiences that result from the real-time combination of distributed live sources and stored digital assets, has changed the requirements for, and possibilities of, systems that provide distributed caching, computation, and com-munication. We argue that the real-time interactive nature and high demands on data storage, streaming rates, and processing power of Metaverse applications will accelerate the merging of the cloud into the network, leading to highly-distributed tightly-integrated compute- and data-intensive networks becoming universal compute platforms for next-generation digital experiences. In this paper, we first describe the requirements of Metaverse applications and associated supporting infrastructure, including rele-vant use cases. We then outline a comprehensive cloud network flow mathematical framework, designed for the end-to-end optimization and control of such systems, and show numerical results illustrating its promising role for the efficient operation of Metaverse-ready networks. 
    more » « less
  4. Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly impor-tant role in the efficient delivery of real-time stream-processing applications (also referred to as augmented information services), such as industrial automation and metaverse experiences (e.g., extended reality, immersive gaming). While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast na-ture, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty con-trol theory to develop the first fully decentralized, throughput-and cost-optimal algorithm for multicast flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing network control policies. 
    more » « less
  5. Computational science today depends on complex, data-intensive applications operating on datasets from a variety of scientific instruments. A major challenge is the integration of data into the scientist's workflow. Recent advances in dynamic, networked cloud resources provide the building blocks to construct reconfigurable, end-to-end infrastructure that can increase scientific productivity. However, applications have not adequately taken advantage of these advanced capabilities. In this work, we have developed a novel network-centric platform that enables high-performance, adaptive data flows and coordinated access to distributed cloud resources and data repositories for atmospheric scientists. We demonstrate the effectiveness of our approach by evaluating time-critical, adaptive weather sensing workflows, which utilize advanced networked infrastructure to ingest live weather data from radars and compute data products used for timely response to weather events. The workflows are orchestrated by the Pegasus workflow management system and were chosen because of their diverse resource requirements. We show that our approach results in timely processing of Nowcast workflows under different infrastructure configurations and network conditions. We also show how workflow task clustering choices affect throughput of an ensemble of Nowcast workflows with improved turnaround times. Additionally, we find that using our network-centric platform powered by advanced layer2 networking techniques results in faster, more reliable data throughput, makes cloud resources easier to provision, and the workflows easier to configure for operational use and automation. 
    more » « less