skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconfigurable nonlinear optical element using tunable couplers and inverse-designed structure
Abstract In recent years, wave-based analog computing has been at the center of attention for providing ultra-fast and power-efficient signal processing enabled by wave propagation through artificially engineered structures. Building on these structures, various proposals have been put forward for performing computations with waves. Most of these proposals have been aimed at linear operations, such as vector-matrix multiplications. The weak and hardly controllable nonlinear response of electromagnetic materials imposes challenges in the design of wave-based structures for performing nonlinear operations. In the present work, first, by using the method of inverse design we propose a three-port device, which consists of a combination of linear and Kerr nonlinear materials, exhibiting the desired power-dependent transmission properties. Then, combining a proper arrangement of such devices with a collection of Mach–Zehnder interferometers (MZIs), we propose a reconfigurable nonlinear optical architecture capable of implementing a variety of nonlinear functions of the input signal. The proposed device may pave the way for wave-based reconfigurable nonlinear signal processing that can be combined with linear networks for full-fledged wave-based analog computing.  more » « less
Award ID(s):
2309043
PAR ID:
10503378
Author(s) / Creator(s):
; ;
Publisher / Repository:
De Gruyer
Date Published:
Journal Name:
Nanophotonics
Volume:
12
Issue:
14
ISSN:
2192-8606
Page Range / eLocation ID:
3019 to 3027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wave-based analog computing in the forms of inversedesigned metastructures and the meshes of Mach−Zehnder interferometers (MZI) have recently received considerable attention due to their capability in emulating linear operators, performing vector-matrix multiplication, inverting matrices, and solving integral and differential equations via electromagnetic wave interaction and manipulation in such structures. Here, we combine these two platforms to propose a wave-based metadevice that can compute scattered fields in electromagnetic forward scattering problems. The proposed device consists of two subsystems: a set of reconfigurable couplers with a proper feedback system and an inverse-designed inhomogeneous material block. The first subsystem computes the magnitude and phase of the dipole polarization induced in the scatterers when illuminated with a given incident wave (matrix inversion). The second subsystem computes the magnitude and phase of the scattered fields at given detection points (vector-matrix multiplication). We discuss the functionality of this metadevice, and through several examples, we theoretically evaluate its performance by comparing the simulation results of this device with fullwave numerical simulations and numerically evaluated matrix inversion. We also highlight that since the first section is reconfigurable, the proposed device can be used for different permittivity distributions of the scatterer and incident excitations without changing the inverse-designed section. Our proposed device may provide a versatile platform for rapid computation in various scattering scenarios. 
    more » « less
  2. Abstract Random matrices are fundamental in photonic computing because of their ability to model and enhance complex light interactions and signal processing capabilities. In manipulating classical light, random operations are utilized for random projections and dimensionality reduction, which are important for analog signal processing, computing, and imaging. In quantum information processing, random unitary operations are essential to boson sampling algorithms for multiphoton states in linear photonic circuits. Random operations are typically realized in photonic circuits through fixed disordered structures or through large meshes of interferometers with reconfigurable phase shifters, requiring a large number of active components. In this article, we introduce a compact photonic circuit for generating random matrices by utilizing programmable phase modulation layers interlaced with a fixed mixing operator. We show that using only two random phase layers is sufficient for producing output optical signals with a white-noise profile, even for highly sparse input optical signals. We experimentally demonstrate these results using a silicon-based photonic circuit with tunable thermal phase shifters and waveguide lattices as mixing layers. The proposed circuit offers a practical method for generating random matrices for photonic information processing and for applications in data encryption. 
    more » « less
  3. Abstract High-bandwidth applications, from multi-gigabit communication and high-performance computing to radar signal processing, demand ever-increasing processing speeds. However, they face limitations in signal sampling and computation due to hardware and power constraints. In the microwave regime, where operating frequencies exceed the fastest clock rates, direct sampling becomes difficult, prompting interest in neuromorphic analog computing systems. We present the first demonstration of direct broadband frequency domain computing using an integrated circuit that replaces traditional analog and digital interfaces. This features a Microwave Neural Network (MNN) that operates on signals spanning tens of gigahertz, yet reprogrammed with slow, 150 MBit/sec control bitstreams. By leveraging significant nonlinearity in coupled microwave oscillators, features learned from a wide bandwidth are encoded in a comb-like spectrum spanning only a few gigahertz, enabling easy inference. We find that the MNN can search for bit sequences in arbitrary, ultra-broadband10 GBit/sec digital data, demonstrating suitability for high-speed wireline communication.Notably, it can emulate high-level digital functions without custom on-chip circuits, potentially replacing power-hungry sequential logic architectures. Its ability to track frequency changes over long capture times also allows for determining flight trajectories from radar returns. Furthermore, it serves as an accelerator for radio-frequency machine learning, capable of accurately classifying various encoding schemes used in wireless communication. The MNN achieves true, reconfigurable broadband computation, which has not yet been demonstrated by classical analog modalities, quantum reservoir computers using superconducting circuits, or photonic tensor cores, and avoidsthe inefficiencies of electro-optic transduction. Its sub-wavelength footprint in a Complementary Metal-Oxide-Semiconductor process and sub-200 milliwatt power consumption enable seamless integration as a general-purpose analog neural processor in microwave and digital signal processing chips. 
    more » « less
  4. Inverse design is a powerful tool in wave physics for compact, high-performance devices. To date, applications in photonics have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the “black box” nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at a rate of 1.1 MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications. 
    more » « less
  5. Recent interest in wide-band multi-giga-bit-per second wireless communications over mm-wave bands has created both new opportunities and design challenges. The realization of such technologies including multi-giga-samples-per second data conversion and digital signal processing systems is extremely challenging. In this brief, we propose a fully analog QAM demodulator as a step towards eliminating the power hungry and ultra-high speed digital components. The proposed low-complexity, low-overhead solution is shown to be robust against analog processing errors. 
    more » « less