skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Substrate Dependence of the Self-heating in Lead Zirconate Titanate (PZT) MEMS Actuators
Lead zirconate titanate (PZT) thin films offer advantages in microelectromechanical systems (MEMSs) including large motion, lower drive voltage, and high energy densities. Depending on the application, different substrates are sometimes required. Self-heating occurs in the PZT MEMS due to the energy loss from domain wall motion, which can degrade the device performance and reliability. In this work, the self-heating of PZT thin films on Si and glass and a film released from a substrate were investigated to understand the effect of substrates on the device temperature rise. Nano-particle assisted Raman thermometry was employed to quantify the operational temperature rise of these PZT actuators. The results were validated using a finite element thermal model, where the volumetric heat generation was experimentally determined from the hysteresis loss. While the volumetric heat generation of the PZT films on different substrates was similar, the PZT films on the Si substrate showed a minimal temperature rise due to the effective heat dissipation through the high thermal conductivity substrate. The temperature rise on the released structure is 6.8× higher than that on the glass substrates due to the absence of vertical heat dissipation. The experimental and modeling results show that the thin layer of residual Si remaining after etching plays a crucial role in mitigating the effect of device self-heating. The outcomes of this study suggest that high thermal conductivity passive elastic layers can be used as an effective thermal management solution for PZT-based MEMS actuators.  more » « less
Award ID(s):
1841453
PAR ID:
10503396
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AIP PUBLISHING
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
135
Issue:
16
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Perovskite materials, of which strontium titanate (STO) and its thin films are an example, have attracted significant scientific interest because of their desirable properties and the potential to tune thermal conductivity by employing several techniques. Notably, strontium titanate thin films on silicon (Si) substrates serve as a fundamental platform for integrating various oxides onto Si substrates, making it crucial to understand the thermal properties of STO on Si. This work investigates the thermal conductivity of STO thin films on an Si substrate for varying film thicknesses (12, 50, 80, and 200 nm) at room temperature (∼300 K). The thin films are deposited using molecular beam epitaxy on the Si substrate and their thermal conductivity is characterized using the frequency domain thermoreflectance (FDTR) method. The measured values range from 7.4 ± 0.74 for the 200 nm thick film to 0.8 ± 0.1 W m−1 K−1 for the 12 nm thick film, showing a large effect of the film thickness on the thermal conductivity values. The trend of the values is diminishing with the corresponding decrease in the thin film thickness, with a reduction of 38%–93% in the thermal conductivity values, for film thicknesses ranging from 200 to 12 nm. This reduction in the values is relative to the bulk single crystal values of STO, which may range from 11 to 13.5 W m−1 K−1 [Yu et al., Appl. Phys. Lett. 92, 191911 (2008) and Fumega et al., Phys. Rev. Mater. 4, 033606 (2020)], as measured by our FDTR-based experiment. The study also explores the evaluation of volumetric heat capacity (Cp). The measured volumetric heat capacity for the 200 nm thin film is 3.07 MJ m−3 K−1, which is in reasonable agreement with the values available in the literature. 
    more » « less
  2. null (Ed.)
    Understanding the failure mechanisms of piezoelectric thin films is critical for the commercialization of piezoelectric microelectromechanical systems. This paper describes the failure of 0.6 mu m lead zirconate titanate (PZT) thin films on Si wafers with different in-plane stresses under large electric fields. The films failed by a combination of cracking and thermal breakdown events. It was found that the crack initiation and propagation behavior varied with the stress state of the films. The total stress required for crack initiation was estimated to be near 500 MPa. As expected, cracks propagated perpendicular to the maximum tensile stress direction. Thermal breakdown events and cracks were correlated, suggesting coupling between electrical and mechanical failure. It was also found that films that were released from the underlying substrates were less susceptible to failure by cracking. It was proposed that during electric field loading the released film stacks were able to bow and alleviate some of the stress. Released films may also experience enhanced domain wall motion that increases their fracture toughness. The results indicate that both applied stress and clamping conditions play important roles in the electromechancial failure of piezoelectric thin films. 
    more » « less
  3. Piezoelectric microelectromechanical systems (piezoMEMS) enable dense arrays of actuators which are often driven to higher electrical fields than their bulk piezoelectric counterparts. In bulk ceramics, high field driving causes internal heating of the piezoelectric, largely due to field-induced domain wall motion. Self-heating is then tracked as a function of vibration velocity to determine the upper bound for the drive levels. However, the literature is limited concerning self-heating in thin film piezoMEMS. In this work, it is shown that self-heating in piezoMEMS transducer arrays occurs due to domain wall motion and Ohmic losses. This was demonstrated via a systematic study of drive waveform dependence of self-heating in piezoMEMS arrays. In particular, the magnitude of self-heating was quantified as a function of different waveform parameters (e.g., amplitude, DC offset, and frequency). Thermal modeling of the self-heating of piezoMEMS using the measured hysteresis loss from electrical characterization as the heat source was found to be in excellent agreement with the experimental data. The self-heating model allows improved thermal design of piezoMEMS and can, furthermore, be utilized for functional heating, especially for device level poling. 
    more » « less
  4. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions. 
    more » « less
  5. A protocol for successfully depositing [001] textured, 2–3 µm thick films of Al0.75Sc0.25N, is proposed. The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field. 
    more » « less