Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m−3), D4 (57 ng m−3), D5 (230 ng m−3), D6 (11 ng m−3), L5 (2.5 ng m−3), and L7 (1.3 ng m−3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.
more »
« less
Siloxane Emissions and Exposures during the Use of Hair Care Products in Buildings
Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110–1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50–310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4–6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere.
more »
« less
- Award ID(s):
- 1847493
- PAR ID:
- 10503432
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Environmental Science & Technology
- Volume:
- 57
- Issue:
- 48
- ISSN:
- 0013-936X
- Page Range / eLocation ID:
- 19999 to 20009
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Scented wax products, such as candles and wax warmers/melts, are popular fragranced consumer products that are commonly used in residential buildings. As scented wax products are intentionally fragranced to produce pleasant smellscapes for occupants, they may represent an important source of volatile organic compounds (VOCs) to indoor atmospheres. The aim of this study is to evaluate terpene emission factors (EFs) and inhalation intake fractions (iFs) for scented wax products to better understand their impact on indoor chemistry and chemical exposures. Full-scale emission experiments were conducted in the Purdue zEDGE Test House using a variety of scented candles (n = 5) and wax warmers/melts (n = 14) under different outdoor air exchange rates (AERs). Terpene concentrations were measured in real-time using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). PTR-TOF-MS measurements revealed that scented candle and wax warmer/melt products emit a variety of monoterpenes (C10H16) and oxygen-containing monoterpenoids (C10H14O, C10H16O, C10H18O, C10H20O), with peak concentrations in the range of 10^−1 to 10^2 ppb. Monoterpene EFs were much greater for scented wax warmers/melts (C10H16 EFs ~ 10^2 mg per g wax consumed) compared to scented candles (C10H16 EFs ~ 10^−1 to 100 mg per g wax consumed). Significant emissions of reactive terpenes from both products, along with nitrogen oxides (NO, NO2) from candles, depleted indoor ozone (O3) concentrations. Terpene iFs were similar between the two products (iFs ~ 10^3 ppm) and increased with decreasing outdoor AER. Terpene iFs during concentration decay periods were similar to, or greater than, iFs during active emission periods for outdoor AERs ≤ 3.0 h^−1. Overall, scented wax warmers/melts were found to release greater quantities of monoterpenes compared to other fragranced consumer products used in the home, including botanical disinfectants, hair care products, air fresheners, and scented sprays.more » « less
-
Cyclic volatile methyl siloxanes (cVMS) are anthropogenic chemicals that have come under scrutiny due to their widespread use and environmental persistence. Significant data on environmental concentrations and persistence of these chemicals exists, but their oxidation mechanism is poorly understood, preventing a comprehensive understanding of the environmental fate and impact of cVMS. We performed experiments in an environmental chamber to characterize the first-generation oxidation products of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5) under different peroxy radical fates (unimolecular reaction or bimolecular reaction with either NO or HO2) that approximate a range of atmospheric compositions. While the identity of the oxidation products from D3 changed as a function of the peroxy radical fate, the identity and yield of D4 and D5 oxidation products remained largely constant. We compare our results against the output from a kinetic model of cVMS oxidation chemistry. The reaction mechanism used in the model is developed using a combination of previously proposed cVMS oxidation reactions and standard atmospheric oxidation radical chemistry. We find that the model is unable to reproduce our measurements, particularly in the case of D4 and D5. The products that are poorly represented in the model help to identify possible branching points in the mechanism, which require further investigation. Additionally, we estimated the physical properties of the cVMS oxidation products using structure–activity relationships and found that they should not be significantly partitioned to organic or aqueous aerosol. The results suggest that cVMS first-generation oxidation products are also long-lived in the atmosphere and that environmental monitoring of these compounds is necessary to understand the environmental chemistry and loading of cVMS.more » « less
-
Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange.more » « less
-
Bertram, Timothy H (Ed.)The indoor air quality of a residential home during winter in Fairbanks, Alaska, was investigated and contrasted with outdoor levels. Twenty-four-hour average indoor and outdoor filter samples were collected from January 17 to February 25, 2022, in a residential area with high outdoor PM2.5 concentrations. The oxidative potential of PM2.5 was determined using the dithiothreitol-depletion assay (OPDTT). For the unoccupied house, the background indoor-to-outdoor (I/O) ratio of mass-normalized OP (OPmDTT), a measure of the intrinsic health- relevant properties of the aerosol, was less than 1 (0.53 ± 0.37), implying a loss of aerosol toxicity as air was transported indoors. This may result from transport and volatility losses driven by the large gradients in temperature (average outdoor temperature of −19°C/average indoor temperature of 21 °C) or relative humidity (average outdoor RH of 78%/average indoor RH of 11%), or both. Various indoor activities, including pellet stove use, simple cooking experiments, incense burning, and mixtures of these activities, were conducted. The experiments produced PM2.5 with a highly variable OPmDTT. PM2.5 from cooking emissions had the lowest OP values, while pellet stove PM2.5 had the highest. Correlations between volume-normalized OPDTT (OPvDTT), relevant to exposure, and indoor PM2.5 mass concentration during experiments were much lower compared to those in outdoor environments. This suggests that mass concentration alone can be a poor indicator of possible adverse effects of various indoor emissions. These findings highlight the importance of considering both the quantity of particles and sources (chemical composition), as health metrics for indoor air quality.more » « less
An official website of the United States government

