skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuning of ultraviolet ‐curable ink printability via in situ ultraviolet irradiation during direct ink write applications
Abstract Direct ink write deposition facilitates line‐by‐line extrusion of inks spanning wide viscoelastic ranges. Following deposition, post processing technologies permit tuning of the extrudate's material property characteristics—ultraviolet (UV) irradiation, facilitating the photopolymerization of UV‐reactive catalyst solutions, permits targeted modification of the extrudate's microstructure and in situ tuning of extrudate macrostructure. This report analyzes the morphological, rheological, and microstructural property relationships governing the printability, and processivity, of extruded UV‐curable resin inks for delineation of sufficiency and optimization of ink printability utilizing direct ink write technologies. A design‐of‐experiments approach is implemented to quantify significance regarding an extrudate's dimensional response to extrusion parameter variation and in situ processing parameters, identifying proportionally of nozzle velocity, nozzle height, and UV irradiation exposure with extrudate aspect ratio, reflected by respective maximum extrudate aspect ratio increases of 158% and 109%, regarding 121 and 123K resin inks. Finally, the relationship between extrudate morphology and microstructure variation was assessed via dielectric cure monitoring, whereby an extrudate's ion viscosity was calculated in relation to its rheological modulus, reflecting the relationship between an extrudate's morphology, rheological response, and printability, regarding its microstructural variation.  more » « less
Award ID(s):
1735968
PAR ID:
10503438
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
141
Issue:
19
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid development of additive manufacturing, also known as three-dimensional (3D) printing, is driving innovations in both industry and academia. Direct ink writing (DIW), an extrusion-based 3D printing technology, can build 3D structures through the deposition of custom-made inks and produce devices with complex architectures, excellent mechanical properties, and enhanced functionalities. A paste-like ink is the key to successful printing. However, as new ink compositions have emerged, the rheological requirements of inks have not been well connected to printability, or the ability of a printed object to maintain its shape and support the weight of subsequent layers. In this review, we provide an overview of the rheological properties of successful DIW inks and propose a classification system based on ink composition. Factors influencing the rheology of different types of ink are discussed, and we propose a framework for describing ink printability using measures of rheology and print resolution. Furthermore, evolving techniques, including computational studies, high-throughput rheological measurements, machine learning, and materiomics, are discussed to illustrate the future directions of feedstock development for DIW. The goals of this review are to assess our current understanding of the relationship between rheological properties and printability, to point out specific challenges and opportunities for development, to provide guidelines to those interested in multi-material DIW, and to pave the way for more efficient, intelligent approaches for DIW ink development. 
    more » « less
  2. Three-dimensional printing (3DP) of functional materials is increasingly important for advanced applications requiring objects with complex or custom geometries or prints with gradients or zones with different properties. A common 3DP technique is direct ink writing (DIW), in which printable inks are comprised of a fluid matrix filled with solid particles, the latter of which can serve a dual purpose of rheology modifiers to enable extrusion and functional fillers for performance-related properties. Although the relationship between filler loading and viscosity has been described for many polymeric systems, a thorough description of the rheological properties of three-dimensional (3D) printable composites is needed to expedite the creation of new materials. In this manuscript, the relationship between filler loading and printability is studied using model paraffin/photopolymer composite inks containing between 0 and 73 vol. % paraffin microbeads. The liquid photopolymer resin is a Newtonian fluid, and incorporating paraffin microbeads increases the ink viscosity and imparts shear-thinning behavior, viscoelasticity, and thixotropy, as established by parallel plate rheometry experiments. Using Einstein and Batchelor's work on colloidal suspension rheology, models were developed to describe the thixotropic behavior of inks, having good agreement with experimental results. Each of these properties contributes to the printability of highly filled ([Formula: see text]43 vol. % paraffin) paraffin/photopolymer composite inks. Through this work, the ability to quantify the ideal rheological properties of a DIW ink and to selectively control and predict its rheological performance will facilitate the development of 3D printed materials with tunable functionalities, thus, advancing 3DP technology beyond current capabilities. 
    more » « less
  3. Abstract Direct ink writing (DIW) process is a facile additive manufacturing technology to fabricate three-dimensional (3D) objects with various materials. Its versatility has attracted considerable interest in academia and industry in recent years. As such, upsurging endeavors are invested in advancing the ink flow behaviors in order to optimize the process resolution and the printing quality. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and its underlying theories. Here, we present a comprehensive analytical study of non-Newtonian ink flow behavior during the DIW process. Different syringe-nozzle geometries are modeled for the comparative case studies. By using the computational fluid dynamics (CFD) simulation method, we reveal the shear-thinning property during the ink extrusion process. Besides, we study the viscosity, shear stress, and velocity fields, and analyze the advantages and drawbacks of each syringe-nozzle model. On the basis of these investigations and analyses, we propose an improved syringe-nozzle geometry for stable extrusion and high printing quality. A set of DIW printing experiments and rheological characterizations are carried out to verify the simulation studies. The results developed in this work offer an in-depth understanding of the ink flow behavior in the DIW process, providing valuable guidelines for optimizing the physical DIW configuration toward high-resolution printing and, consequently, improving the performance of DIW-printed objects. 
    more » « less
  4. Material extrusion (MEX) of soft, multifunctional composites consisting of liquid metal (LM) droplets can enable highly tailored properties for a range of applications from soft robotics to stretchable electronics. However, an understanding of how LM ink rheology and print process parameters can reconfigure LM droplet shape during MEX processing for in-situ control of properties and function is currently limited. Herein, the material (ink viscosity, and LM droplet size) and process (nozzle velocity, height from print bed, and extrusion rate) parameters are determined which control LM microstructure during MEX of these composites. The interplay and interdependence of these parameters is evaluated and nearly spherical LM droplets are transformed into highly elongated ellipsoidal shapes with an average aspect ratio of 12.4 by systematically tuning each individual parameter. Material and process relationships are established for the LM ink which show that an ink viscosity threshold should be fulfilled to program the LM microstructure from spherical to an ellipsoidal shape during MEX. Additionally, the thin oxide layer on the LM droplets is found to play a unique and critical role in the reconfiguration and retention of droplet shape. Finally, two quantitative design maps based on material and process parameters are presented to guide MEX additive manufacturing strategies for tuning liquid droplet architecture in LM-polymer inks. The insights gained from this study enable informed design of materials and manufacturing to control microstructure of emerging multifunctional soft composites. 
    more » « less
  5. Abstract Direct ink writing (DIW) using polymer‐particle composite inks is a new research area enabling a wide range of new functionalities. Despite extensive studies, there remains a need for a deeper understanding of how particle size and loading specifically influence printability, especially in the nano range. This work aims to systematically evaluate the effects of SiO2nanoparticle size (26–847 nm) and loading on printability within a polydimethylsiloxane (PDMS) matrix. For the single‐layer printing process, which is influenced by the substrate properties, a 3D printing line analysis (3D‐PLA) is developed to monitor the top and side views of printed lines. It is found that line width varies with ink composition and substrate, while the line height decreases with solvent evaporation, indicating a strong confinement effect from the substrate. For multilayer structures, dual‐layer printing analysis (DLPA) is utilized to evaluate the printability. It is shown that DLPA is independent of the substrate and can be used to compare the printabilities from different inks. Both 3D‐PLA and DLPA can be correlated to the rheological behavior of the ink through ink rheology analysis (IRA). Finally, this research defined the design space for DIW by benchmarking the minimum and maximum particle loadings for printable composite inks. 
    more » « less