skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solution Studies of a Water-Stable, Trivalent Antimony Pnictogen Bonding Anion Receptor with High Binding Affinities for CN – , OCN – , and OAc –
The solution phase anion binding behavior of a water-stable bidentate pnictogen bond donor was studied. A modest change in the visible absorption spectrum allowed for the determination of the binding constants. High binding constants were observed with cyanide, cyanate, and acetate, and these were corroborated with density functional theory (DFT) calculations. The receptor could be recovered free from the anion following treatment with methyl triflate, confirming that it remains intact. The tight binding of cyanide and water stability were exploited to use this system as a supramolecular catalyst in a phase-transfer Strecker reaction, further demonstrating the utility of pnictogen bonding as a tool in noncovalent catalysis.  more » « less
Award ID(s):
1847878
PAR ID:
10503605
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
62
Issue:
31
ISSN:
0020-1669
Page Range / eLocation ID:
12582 to 12589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Four new three-dimensional (3-D) coordination frameworks based on the heptacyanomolybdate( iii ) anion were prepared and characterised by magnetic measurements: {[Mn II (imH) 2 ] 2 [Mn II (H 2 O)(imH) 3 ][Mn II (imH) 4 ] [Mo III (CN) 7 ] 2 ·6H 2 O} n ( 1 ) (imH = imidazole), {[Mn II (H 2 O) 2 (imH)] 3 [Mn II (H 2 O)(imH) 2 ][Mo III (CN) 7 ] 2 ·5H 2 O} n ( 2 ), {[Mn II (Htrz)(H 2 O) 2 ][Mn II (Htrz) 0.7 (H 2 O) 2.3 ][Mo III (CN) 7 ]·5.6H 2 O} n ( 3 ) (Htrz = 1,2,4-triazole) and {[Mn II (H 2 O) 2 ] 3 [Mn II (H 2 O) 4 ][Mo III (CN) 7 ] 2 ·6H 2 O·2urea} n ( 4 ). All four compounds exhibit long-range ferrimagnetic ordering and exhibit an opening of their magnetic hysteresis loops at 1.8 K; 1 and 2 exhibit the highest coercive fields among all known [Mo III (CN) 7 ]-based assemblies, 5000 and 4500 Oe respectively. The coercivity of 1–4 is correlated with the geometry of the heptacyanomolybdate( iii ) anion and the cyanide bridging pattern. A paramagnetic analogue of compound 1 , {[Mn II (imH) 2 ] 2 [Mn II (H 2 O)(imH) 3 ][Mn II (imH) 4 ][Re III (CN) 7 ] 2 ·6H 2 O} n ( 1Re ), where the heptacyanomolybdate( iii ) anion is substituted by the diamagnetic heptacyanorhenate( iii ) anion is also reported which constitutes the first example of a coordination framework based on [Re III (CN) 7 ] 4− . 
    more » « less
  2. null (Ed.)
    The sodium anion (Na − ) was once thought to behave like a ‘genuine’ anion, with both the [Ne] core and the 3s valence shell interacting very weakly with their environments. In the present work, following a recent study of the surprisingly small quadrupolar line widths of Na − , NMR shielding calculations were carried out for the Na − /Na + [2.2.2]cryptand system solvated in methylamine, based on ab initio molecular dynamics simulations, followed by detailed analyses of the shielding constants. The results confirm that Na − does not act like a quasi-free ion that interacts only weakly with its surroundings. Rather, the filled 3s shell of Na − interacts strongly with its chemical environment, but only weakly with the ion's own core and the nucleus, and it isolates the core from the chemical environment. As a consequence, the Na − ion appears in NMR experiments like a free ion. 
    more » « less
  3. Abstract Metal–ligand bonding and noncovalent interactions (NCIs), such as hydrogen bonding orπ–πinteractions, play a crucial role in determining the structure, function, and selectivity of both biological and artificial metalloproteins. In this study, we employed a hybrid quantum mechanics/molecular mechanics (QM/MM) approach to investigate the ligation of water or cyanide in a mutated myoglobin system, in which the native heme scaffold was replaced with M-salophen or M-salen Schiff base complexes (M = Cr, Mn, Fe). Using our local vibrational mode analysis, particularly local vibrational mode force constants as intrinsic bond strength parameters, complemented with electron density and natural orbital analyses we explored the role of metal–ligand bonding and NCIs in different environments within the myoglobin pocket. Our analysis revealed that metal–ligand bonding, for both water and cyanide ligands, is strongest in the delta form of distal histidine and favors salophen prosthetic groups, as indicated by an overall increase in metal–ligand bond strength. Hydrogen bonding between the distal histidine and ligand also exhibited greater strength in the delta form; however, this effect was more pronounced with salen prosthetic groups. Additionally, the NCIs within the active pocket of the protein were found to be variable, highlighting the adaptability of local force constants. In summary, our data underscore the potential of computational methodologies in guiding the rational design of artificial metalloproteins for tailored applications, with local vibrational mode analysis serving as a powerful tool for bond strength assessment. 
    more » « less
  4. This study explores the dynamic self-assembly and disassembly of hypervalent iodine-based macrocycles (HIMs) guided by secondary bonding interactions. The reversible disassembly and reassembly of HIMs are facilitated through anion binding via the addition of tetrabutylammonium (TBA) salts or removal of the anion by the addition of silver nitrate. The association constants for HIM monomers with TBA(Cl) and TBA(Br) are calculated and show a correlation with the strength of the iodine–anion bond. A unique tetracoordinate hypervalent iodine-based compound was identified as the disassembled monomer. Last, the study reveals the dynamic bonding nature of these macrocycles in solution, allowing for rearrangement and participation in dynamic bonding chemistry. 
    more » « less
  5. Pnictogen bonding is beginning to emerge as a useful supramolecular interaction. The design strategies for these systems are still in the early stages of development and much attention has been focused on the lighter pnictogens. Pnictogen bond donors can have up to three independent sites for binding which can result in triple pnictogen bonding. This has been observed in the self-assembly of antimony alkoxide cages, but not with the lighter congeners. This work reports structural characterization of an analogous arsenic alkoxide cage that engages in a single pnictogen bond and synthetic explorations of the bismuth congener. DFT calculations are used to evaluate the differences between the structures. Ultimately the partial charge on the pnictogen and the energy of the pnictogen lone pair dictate the strength, orientation and number of pnictogen bonds that these cages form. Antimony cages strike the best balance between strength and directionality, allowing them to achieve triple pnictogen bonding where the other congeners do not. 
    more » « less