skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methane-carbon budget of a ferruginous meromictic lake and implications for marine methane dynamics on early Earth
Abstract The greenhouse gas methane (CH4) contributed to a warm climate that maintained liquid water and sustained Earth’s habitability in the Precambrian despite the faint young sun. The viability of methanogenesis (ME) in ferruginous environments, however, is debated, as iron reduction can potentially outcompete ME as a pathway of organic carbon remineralization (OCR). Here, we document that ME is a dominant OCR process in Brownie Lake, Minnesota (midwestern United States), which is a ferruginous (iron-rich, sulfate-poor) and meromictic (stratified with permanent anoxic bottom waters) system. We report ME accounting for ≥90% and >9% ± 7% of the anaerobic OCR in the water column and sediments, respectively, and an overall particulate organic carbon loading to CH4 conversion efficiency of ≥18% ± 7% in the anoxic zone of Brownie Lake. Our results, along with previous reports from ferruginous systems, suggest that even under low primary productivity in Precambrian oceans, the efficient conversion of organic carbon would have enabled marine CH4 to play a major role in early Earth’s biogeochemical evolution.  more » « less
Award ID(s):
1944946
PAR ID:
10503628
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
The Geological Society of America
Date Published:
Journal Name:
Geology
Volume:
52
Issue:
3
ISSN:
0091-7613
Page Range / eLocation ID:
187 to 192
Subject(s) / Keyword(s):
carbon cycle methane lake ferruginous
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Uranium isotopes (238U/235U) have been used widely over the last decade as a global proxy for marine redox conditions. The largest isotopic fractionations in the system occur during U reduction, removal, and burial. Applying this basic framework, global U isotope mass balance models have been used to predict the extent of ocean floor anoxia during key intervals throughout Earth's history. However, there are currently minimal constraints on the isotopic fractionation that occurs during reduction and burial in anoxic and iron‐rich (ferruginous) aquatic systems, despite the consensus that ferruginous conditions are thought to have been widespread through the majority of our planet's history. Here we provide the first exploration of δ238U values in natural ferruginous settings. We measured δ238U in sediments from two modern ferruginous lakes (Brownie Lake and Lake Pavin), the water column of Brownie Lake, and sedimentary rocks from the Silurian‐Devonian boundary that were deposited under ferruginous conditions. Additionally, we provide new δ238U data from core top sediments from anoxic but nonsulfidic settings in the Peru Margin oxygen minimum zone. We find that δ238U values from sediments deposited in all of these localities are highly variable but on average are indistinguishable from adjacent oxic sediments. This forces a reevaluation of the global U isotope mass balance and how U isotope values are used to reconstruct the evolution of the marine redox landscape. 
    more » « less
  2. The dataset is comprised of analyses of sediment cores and sediment trap samples from ferruginous and meromictic Brownie Lake, Minnesota, U.S.A from January 2018 through February 2021. The dataset includes bulk sediment characteristics including water content, grain size, major and minor elements. Voltammetric scans were collected on porewaters and lake waters. Sediment porewaters were analyzed for pH, total alkalinity, ferrous iron, and dissolved sulfur species contents. Sediment samples were maintained under the exclusion of oxygen for analysis by synchrotron-based X-ray absorption spectroscopy. 
    more » « less
  3. Ferruginous conditions, defined by anoxia and abundant dissolved ferrous iron (Fe2+aq), dominated the Precambrian oceans but are essentially non-existent in a modern, oxygenated world. Ferruginous meromictic lakes represent natural laboratories to ground truth our understanding of the stable Fe isotope proxy, which has been used extensively in interpreting the origins of Fe-rich sedimentary rocks like iron formations (IFs) and the interactions of early life with high-Fe2+aq conditions. Here we report comprehensive geochemical and Fe isotopic analyses of samples collected in May and August 2022, and March 2023, from Deming Lake, Minnesota, a ferruginous meromictic lake that undergoes surface freezing in winter and never becomes euxinic. Through chemical and Fe isotopic analyses of different putative Fe sources to Deming Lake; including eolian input trapped in winter ice cover, nearby bogs, and regional groundwaters sampled at surface springs; we find that a groundwater source provides the best chemical and Fe isotopic match for Deming Lake and can support Fe2+aq-rich waters at depth that maintain a permanent chemocline at ~12 m. The ice-free Deming Lake water column can be split into three layers dominated by distinct Fe cycling regimes. Layer (I) extends from the lake surface to the base of the oxycline at ~6 m, and its Fe cycling is dominated by isotopically light Fe uptake into biomass, likely from stabilized dissolved Fe3+, with variable eolian lithogenic influences. Layer (II) extends between the oxycline and the chemocline at ~12 m and is dominated by partial Fe2+aq oxidation on approach to the oxycline, with the formation of variably isotopically heavy Fe3+-bearing particles. Layer (III) underlies the chemocline and is defined by Fe2+ phosphate (vivianite) and carbonate saturation and precipitation under anoxic, Fe2+aq-rich conditions with little Fe isotopic fractionation. The ice-covered winter water column features more homogenous Fe chemistry above the chemocline, which we attribute to seasonal homogenization of Layers (I) and (II), with suppressed ferric particle formation. Authigenic Fe minerals with non-crustal (light) Fe isotopic compositions only appreciably accumulate in sediments in Deming Lake underlying the chemocline. All sediments deposited above 12 m appear crustal in their Fe isotopic, Mn/Fe, and Fe/Al ratios, likely revealing efficient reductive dissolution of Fe3+-bearing lake precipitates and remineralization of Fe-bearing biomass. We find limited fractionation of Fe isotopes in the ice-covered water column and suggest this provides evidence that substantial delivery of oxidants is required to generate highly fractionated Fe isotopic compositions in Sturtian Snowball era IFs. By comparing Fe isotopic and Mn/Fe fractionation trends in the different Deming Lake layers, we also suggest that correlations between these two parameters in giant early Paleoproterozoic IFs requires the simultaneous deposition of multiple authigenic phases on the ancient seafloor. Finally, high-precision triple Fe isotopic analyses of dissolved Fe impacted by extensive oxidation near the Deming Lake oxycline reveal that the slope of the mass fractionation law for natural, O2-mediated Fe2+aq oxidation is identical to those previously defined for both UV photo-oxidation, and for an array of highly fractionated Paleoproterozoic IFs. 
    more » « less
  4. Abstract Thermokarst lakes accelerate deep permafrost thaw and the mobilization of previously frozen soil organic carbon. This leads to microbial decomposition and large releases of carbon dioxide (CO2) and methane (CH4) that enhance climate warming. However, the time scale of permafrost-carbon emissions following thaw is not well known but is important for understanding how abrupt permafrost thaw impacts climate feedback. We combined field measurements and radiocarbon dating of CH4ebullition with (a) an assessment of lake area changes delineated from high-resolution (1–2.5 m) optical imagery and (b) geophysical measurements of thaw bulbs (taliks) to determine the spatiotemporal dynamics of hotspot-seep CH4ebullition in interior Alaska thermokarst lakes. Hotspot seeps are characterized as point-sources of high ebullition that release14C-depleted CH4from deep (up to tens of meters) within lake thaw bulbs year-round. Thermokarst lakes, initiated by a variety of factors, doubled in number and increased 37.5% in area from 1949 to 2009 as climate warmed. Approximately 80% of contemporary CH4hotspot seeps were associated with this recent thermokarst activity, occurring where 60 years of abrupt thaw took place as a result of new and expanded lake areas. Hotspot occurrence diminished with distance from thermokarst lake margins. We attribute older14C ages of CH4released from hotspot seeps in older, expanding thermokarst lakes (14CCH420 079 ± 1227 years BP, mean ± standard error (s.e.m.) years) to deeper taliks (thaw bulbs) compared to younger14CCH4in new lakes (14CCH48526 ± 741 years BP) with shallower taliks. We find that smaller, non-hotspot ebullition seeps have younger14C ages (expanding lakes 7473 ± 1762 years; new lakes 4742 ± 803 years) and that their emissions span a larger historic range. These observations provide a first-order constraint on the magnitude and decadal-scale duration of CH4-hotspot seep emissions following formation of thermokarst lakes as climate warms. 
    more » « less
  5. Glass, Jennifer B. (Ed.)
    ABSTRACT While methane is typically produced under anoxic conditions, methane supersaturation in the presence of oxygen has been observed in both marine and fresh waters. The biological cleavage of methylphosphonate (MPn), which releases both phosphate and methane, is one pathway that may contribute to this paradox. Here, we explore the genomic and functional potential for oxic methane production (OMP) via MPn in Flathead Lake, a large oligotrophic freshwater lake in northwest Montana. Time series and depth profile measurements show that epilimnetic methane was persistently supersaturated despite high oxygen levels, suggesting a possiblein situoxic source. Metagenomic sequencing indicated that 10% of microorganisms in the lake, many of which are related to the Burkholderiales (Betaproteobacteria) and Actinomycetota, have the genomic capacity to cleave MPn. We experimentally demonstrated that these organisms produce methane stoichiometrically with MPn consumption across multiple years. However, methane was only produced at appreciable rates in the presence of MPn when a labile organic carbon source was added, suggesting that this process may be limited by both MPn and labile carbon supply. Members of the generaAcidovorax,Rhodoferax, andAllorhizobium, organisms which make up less than 1% of Flathead Lake communities, consistently responded to MPn addition. We demonstrate that the genomic and physiological potential for MPn use exists among diverse, resident members of Flathead Lake and could contribute to OMP in freshwater lakes when substrates are available. IMPORTANCEMethane is an important greenhouse gas that is typically produced under anoxic conditions. We show that methane is supersaturated in a large oligotrophic lake despite the presence of oxygen. Metagenomic sequencing indicates that diverse, widespread microorganisms may contribute to the oxic production of methane through the cleavage of methylphosphonate. We experimentally demonstrate that these organisms, especially members of the genusAcidovorax, can produce methane through this process. However, appreciable rates of methane production only occurred when both methylphosphonate and labile sources of carbon were added, indicating that this process may be limited to specific niches and may not be completely responsible for methane concentrations in Flathead Lake. This work adds to our understanding of methane dynamics by describing the organisms and the rates at which they can produce methane through an oxic pathway in a representative oligotrophic lake. 
    more » « less