skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward interpretable LSTM-based modeling of hydrological systems
Several studies have demonstrated the ability of long short-term memory (LSTM) machine-learning-based modeling to outperform traditional spatially lumped process-based modeling approaches for streamflow prediction. However, due mainly to the structural complexity of the LSTM network (which includes gating operations and sequential processing of the data), difficulties can arise when interpreting the internal processes and weights in the model. Here, we propose and test a modification of LSTM architecture that is calibrated in a manner that is analogous to a hydrological system. Our architecture, called “HydroLSTM”, simulates the sequential updating of the Markovian storage while the gating operation has access to historical information. Specifically, we modify how data are fed to the new representation to facilitate simultaneous access to past lagged inputs and consolidated information, which explicitly acknowledges the importance of trends and patterns in the data. We compare the performance of the HydroLSTM and LSTM architectures using data from 10 hydro-climatically varied catchments. We further examine how the new architecture exploits the information in lagged inputs, for 588 catchments across the USA. The HydroLSTM-based models require fewer cell states to obtain similar performance to their LSTM-based counterparts. Further, the weight patterns associated with lagged input variables are interpretable and consistent with regional hydroclimatic characteristics (snowmelt-dominated, recent rainfall-dominated, and historical rainfall-dominated). These findings illustrate how the hydrological interpretability of LSTM-based models can be enhanced by appropriate architectural modifications that are physically and conceptually consistent with our understanding of the system.  more » « less
Award ID(s):
1945195
PAR ID:
10503727
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
European Geophysical Union
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
28
Issue:
4
ISSN:
1607-7938
Page Range / eLocation ID:
945 to 971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Deep learning (DL) rainfall–runoff models outperform conceptual, process-based models in a range of applications. However, it remains unclear whether DL models can produce physically plausible projections of streamflow under climate change. We investigate this question through a sensitivity analysis of modeled responses to increases in temperature and potential evapotranspiration (PET), with other meteorological variables left unchanged. Previous research has shown that temperature-based PET methods overestimate evaporative water loss under warming compared with energy budget-based PET methods. We therefore assume that reliable streamflow responses to warming should exhibit less evaporative water loss when forced with smaller, energy-budget-based PET compared with temperature-based PET. We conduct this assessment using three conceptual, process-based rainfall–runoff models and three DL models, trained and tested across 212 watersheds in the Great Lakes basin. The DL models include a Long Short-Term Memory network (LSTM), a mass-conserving LSTM (MC-LSTM), and a novel variant of the MC-LSTM that also respects the relationship between PET and evaporative water loss (MC-LSTM-PET). After validating models against historical streamflow and actual evapotranspiration, we force all models with scenarios of warming, historical precipitation, and both temperature-based (Hamon) and energy-budget-based (Priestley–Taylor) PET, and compare their responses in long-term mean daily flow, low flows, high flows, and seasonal streamflow timing. We also explore similar responses using a national LSTM fit to 531 watersheds across the United States to assess how the inclusion of a larger and more diverse set of basins influences signals of hydrological response under warming. The main results of this study are as follows: The three Great Lakes DL models substantially outperform all process-based models in streamflow estimation. The MC-LSTM-PET also matches the best process-based models and outperforms the MC-LSTM in estimating actual evapotranspiration. All process-based models show a downward shift in long-term mean daily flows under warming, but median shifts are considerably larger under temperature-based PET (−17 % to −25 %) than energy-budget-based PET (−6 % to −9 %). The MC-LSTM-PET model exhibits similar differences in water loss across the different PET forcings. Conversely, the LSTM exhibits unrealistically large water losses under warming using Priestley–Taylor PET (−20 %), while the MC-LSTM is relatively insensitive to the PET method. DL models exhibit smaller changes in high flows and seasonal timing of flows as compared with the process-based models, while DL estimates of low flows are within the range estimated by the process-based models. Like the Great Lakes LSTM, the national LSTM also shows unrealistically large water losses under warming (−25 %), but it is more stable when many inputs are changed under warming and better aligns with process-based model responses for seasonal timing of flows. Ultimately, the results of this sensitivity analysis suggest that physical considerations regarding model architecture and input variables may be necessary to promote the physical realism of deep-learning-based hydrological projections under climate change. 
    more » « less
  2. Abstract Recent observations with varied schedules and types (moving average, snapshot, or regularly spaced) can help to improve streamflow forecasts, but it is challenging to integrate them effectively. Based on a long short‐term memory (LSTM) streamflow model, we tested multiple versions of a flexible procedure we call data integration (DI) to leverage recent discharge measurements to improve forecasts. DI accepts lagged inputs either directly or through a convolutional neural network unit. DI ubiquitously elevated streamflow forecast performance to unseen levels, reaching a record continental‐scale median Nash‐Sutcliffe Efficiency coefficient value of 0.86. Integrating moving‐average discharge, discharge from the last few days, or even average discharge from the previous calendar month could all improve daily forecasts. Directly using lagged observations as inputs was comparable in performance to using the convolutional neural network unit. Importantly, we obtained valuable insights regarding hydrologic processes impacting LSTM and DI performance. Before applying DI, the base LSTM model worked well in mountainous or snow‐dominated regions, but less well in regions with low discharge volumes (due to either low precipitation or high precipitation‐energy synchronicity) and large interannual storage variability. DI was most beneficial in regions with high flow autocorrelation: it greatly reduced baseflow bias in groundwater‐dominated western basins and also improved peak prediction for basins with dynamical surface water storage, such as the Prairie Potholes or Great Lakes regions. However, even DI cannot elevate performance in high‐aridity basins with 1‐day flash peaks. Despite this limitation, there is much promise for a deep‐learning‐based forecast paradigm due to its performance, automation, efficiency, and flexibility. 
    more » « less
  3. This paper presents a comprehensive river discharge analysis to estimate past and future hydrological extremes across Morocco. Hydrological simulations with historical forcing and climate change scenario inputs have been performed to better understand the change in magnitude and frequency of extreme discharge events that cause flooding. Simulations are applied to all major rivers of Morocco, including a total of 16 basins that cover the majority of the country. An ensemble of temperature and precipitation input parameter sets was generated to analyze input uncertainty, an approach that can be extended to other regions of the world, including data-sparse regions. Parameter uncertainty was also included in the analyses. Historical simulations comprise the period 1979–2021, while future simulations (2015–2100) were performed under the Shared Socioeconomic Pathway (SSP) 2–4.5 and SSP5–8.5. Clear patterns of changing flood extremes are projected; these changes are significant when considered as a proportion of the land area of the country. Two types of basins have been identified, based on their different behavior in climate change scenarios. In the Northern/Mediterranean basins we observe a decrease in the frequency and intensity of events by 2050 under both SSPs, whereas for the remaining catchments higher and more frequent high-flow events in the form of flash floods are detected. Our analysis revealed that this is a consequence of the reduction in rainfall accumulation and intensity in both SSPs for the first type of basins, while the opposite applies to the other type. More generally, we propose a methodology that does not rely on observed time series of discharge, so especially for regions where those do not exist or are not available, and that can be applied to undertake future flood projections in the most data-scarce regions. This method allows future hydrological hazards to be estimated for essentially any region of the world. 
    more » « less
  4. For a number of years since their introduction to hydrology, recurrent neural networks like long short-term memory (LSTM) networks have proven remarkably difficult to surpass in terms of daily hydrograph metrics on community-shared benchmarks. Outside of hydrology, Transformers have now become the model of choice for sequential prediction tasks, making it a curious architecture to investigate for application to hydrology. Here, we first show that a vanilla (basic) Transformer architecture is not competitive against LSTM on the widely benchmarked CAMELS streamflow dataset, and lagged especially prominently for the high-flow metrics, perhaps due to the lack of memory mechanisms. However, a recurrence-free variant of the Transformer model can obtain mixed comparisons with LSTM, producing very slightly higher Kling-Gupta efficiency coefficients (KGE), along with other metrics. The lack of advantages for the vanilla Transformer network is linked to the nature of hydrologic processes. Additionally, similar to LSTM, the Transformer can also merge multiple meteorological forcing datasets to improve model performance. Therefore, the modified Transformer represents a rare competitive architecture to LSTM in rigorous benchmarks. Valuable lessons were learned: (1) the basic Transformer architecture is not suitable for hydrologic modeling; (2) the recurrence-free modification is beneficial so future work should continue to test such modifications; and (3) the performance of state-of-the-art models may be close to the prediction limits of the dataset. As a non-recurrent model, the Transformer may bear scale advantages for learning from bigger datasets and storing knowledge. This work lays the groundwork for future explorations into pretraining models, serving as a foundational benchmark that underscores the potential benefits in hydrology. 
    more » « less
  5. This paper advances machine learning (ML)-based streamflow prediction by strategically selecting rainfall events, introducing a new loss function, and addressing rainfall forecast uncertainties. Focusing on the Iowa River Basin, we applied the stochastic storm transposition (SST) method to create realistic rainfall events, which were input into a hydrological model to generate corresponding streamflow data for training and testing deterministic and probabilistic ML models. Long short-term memory (LSTM) networks were employed to predict streamflow up to 12 h ahead. An active learning approach was used to identify the most informative rainfall events, reducing data generation effort. Additionally, we introduced a novel asymmetric peak loss function to improve peak streamflow prediction accuracy. Incorporating rainfall forecast uncertainties, our probabilistic LSTM model provided uncertainty quantification for streamflow predictions. Performance evaluation using different metrics improved the accuracy and reliability of our models. These contributions enhance flood forecasting and decision-making while significantly reducing computational time and costs. 
    more » « less