Abstract Horseshoe crabs as a group are renowned for their morphological conservatism punctuated by marked shifts in morphology associated with the occupation of non-marine environments and have been suggested to exhibit a consistent developmental trajectory throughout their evolutionary history. Here, we report a new species of horseshoe crab from the Ordovician (Late Sandbian) of Kingston, Ontario, Canada, from juvenile and adult material. This new species provides critical insight into the ontogeny and morphology of the earliest horseshoe crabs, indicating that at least some Palaeozoic forms had freely articulating tergites anterior to the fused thoracetron and an opisthosoma comprising 13 segments. 
                        more » 
                        « less   
                    
                            
                            AN ABERRANT LATE ORDOVICIAN HORSESHOE CRAB REVEALS EARLY MORPHOLOGICAL EXPERIMENTATION WITHIN XIPHOSURA
                        
                    
    
            Horseshoe crabs (Chelicerata: Xiphosura) are generally considered to exhibit a highly conserved morphology throughout their evolutionary history and are one of the archetypal ‘living fossil’ groups. This narrative has been challenged in recent years, with numerous lines of evidence indicate that horseshoe crabs have been an evolutionarily dynamic lineage, exhibiting several shifts into non-marine environments and associated peaks in rates of evolutionary change. Nevertheless, marine forms are still characterized by a relatively limited morphological variability for most of their evolutionary history, as evidenced by a consistent developmental trajectory shared between species over 250million years. Attempts to ascertain when horseshoe crabs adopted this ontogenetic trajectory are hindered by the sparse early Paleozoic record of the group; only two species, both assigned to the genus Lunataspis, have been described from the Ordovician, and no Silurian species are known. A new, highly aberrant horseshoe crab from the Late Ordovician Big Hill Lagerstätte, Michigan, provides evidence of early morphological experimentation within the group, indicating that even marine lineages were variable early on in their evolutionary history. The new species represents a distinct genus characterized by a greatly elongated prosomal carapace and is represented by two available specimens (with a third held in a private collection), all of which preserve the same highly unusual carapace shape, indicating the unusual morphology to be a genuine characteristic of the species. Geometric morphometric analysis places the new species in an unoccupied region of morphospace distinct to that of other horseshoe crabs, confirming early morphological experimentation within the clade. Interestingly, while the prosoma is markedly different to any other horseshoe crab species known, the thoracetron is similar to that of Lunataspis. Taken in combination with the known ontogeny of Lunataspis borealis, which exhibits the characteristic xiphosurid development of the thoracetron but a more eurypterid-like ontogenetic trajectory of the prosoma, the new species indicates that developmental canalization occurred within the horseshoe crab lineage, with the thoracetron canalizing prior to the prosoma. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1943082
- PAR ID:
- 10503752
- Publisher / Repository:
- Geological Society of America Abstracts with Programs
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A key aspect of geoscience education initiatives is creating engaging programs that inspire future generations to care about the past, present, and future of our planet. Here, we present a lesson plan designed for 6-12 grade students that uses horseshoe crab (Xiphosura) paleobiology as a tool to teach students about paleoecology, phylogenetics and the scientific process. Framed as a criminal investigation, students are placed in groups and briefed as “fossil detectives”, who are tasked with identifying horseshoe crabs and determining their evolutionary and ecological affinities. Students are provided with a guidebook, evidence bags, and a phylogenetic poster with missing blanks for five horseshoe crabs, ranging in age from Ordovician to modern. Students use the fossil evidence bags of associated biota and guidebooks to determine the locality, age, identity, and paleoenvironmental affinity of each xiphosuran suspect. With this newfound data, paired with morphological observations, students then place each of the five horseshoe crab suspects within a time-scaled phylogeny poster. Afterwards, students are prompted to use logical reasoning skills to determine the minimum number of times horseshoe crabs have explored non-marine environments and which common ancestors likely made this transition on the phylogenetic tree. A pre- and post-test are also being developed to measure the outcomes of this lesson plan.more » « less
- 
            null (Ed.)Xiphosurans are aquatic chelicerates with a fossil record extending into the Early Ordovician and known from a total of 88 described species, four of which are extant. Known for their apparent morphological conservatism, for which they have gained notoriety as supposed ‘living fossils’, recent analyses have demonstrated xiphosurans to have an ecologically diverse evolutionary history, with several groups moving into non-marine environments and developing morphologies markedly different from those of the modern species. The combination of their long evolutionary and complex ecological history along with their paradoxical patterns of morphological stasis in some clades and experimentation among others has resulted in Xiphosura being of particular interest for macroevolutionary study. Phylogenetic analyses have shown the current taxonomic framework for Xiphosura—set out in the Treatise of Invertebrate Paleontology in 1955—to be outdated and in need of revision, with several common genera such as Paleolimulus Dunbar, 1923 and Limulitella Størmer, 1952 acting as wastebasket taxa. Here, an expanded xiphosuran phylogeny is presented, comprising 58 xiphosuran species as part of a 158 taxon chelicerate matrix coded for 259 characters. Analysing the matrix under both Bayesian inference and parsimony optimisation criteria retrieves a concordant tree topology that forms the basis of a genus-level systematic revision of xiphosuran taxonomy. The genera Euproops Meek, 1867, Belinurus König, 1820, Paleolimulus , Limulitella , and Limulus are demonstrated to be non-monophyletic and the previously synonymized genera Koenigiella Raymond, 1944 and Prestwichianella Cockerell, 1905 are shown to be valid. In addition, nine new genera ( Andersoniella gen. nov. , Macrobelinurus gen. nov. , and Parabelinurus gen. nov. in Belinurina; Norilimulus gen. nov. in Paleolimulidae; Batracholimulus gen. nov. and Boeotiaspis gen. nov. in Austrolimulidae; and Allolimulus gen. nov., Keuperlimulus gen. nov., and Volanalimulus gen. nov. in Limulidae) are erected to accommodate xiphosuran species not encompassed by existing genera. One new species, Volanalimulus madagascarensis gen. et sp. nov., is also described. Three putative xiphosuran genera— Elleria Raymond, 1944, Archeolimulus Chlupáč, 1963, and Drabovaspis Chlupáč, 1963—are determined to be non-xiphosuran arthropods and as such are removed from Xiphosura. The priority of Belinurus König, 1820 over Bellinurus Pictet, 1846 is also confirmed. This work is critical for facilitating the study of the xiphosuran fossil record and is the first step in resolving longstanding questions regarding the geographic distribution of the modern horseshoe crab species and whether they truly represent ‘living fossils’. Understanding the long evolutionary history of Xiphosura is vital for interpreting how the modern species may respond to environmental change and in guiding conservation efforts.more » « less
- 
            Horseshoe crabs (class Xiphosura) are a long-lived clade of aquatic chelicerate arthropods with a fossil record spanning approximately 480 million years. Though Xiphosura are often noted for their morphological stability, further investigation of evolutionary rate and paleoecological trends have revealed a remarkably dynamic clade, with both temporal and phylogenetic variability in evolutionary trends. Additionally, heterochrony has been revealed to be a strong driver behind xiphosuran evolution and the exploration of non-marine niches. Using combined geometric morphometric and evolutionary rate techniques, we further highlight the incongruency of the fossil record of xiphosurans with their designation as a “living fossil” or stabilomorph clade. Here, we compare the results of a geometric morphometric analysis with a discrete character evolutionary rate calculation performed using the R package Claddis. Both analyses incorporated 55 xiphosuran species, ranging temporally from the Ordovician Lunataspis aurora to all four modern species. Morphometric data was collected as 2Dlandmarks and semi-landmarks, with variable numbers of points due to varying levels of preservation amongst fossil specimens. These data were then used to produce a PCA for the visualization of morphospace. Both studies support a dynamic evolutionary history for Xiphosura. The discrete character analysis revealed peaks in discrete character evolution in the heterochronic non-marine clades, as well as an overall declining trend in evolutionary rate. Similarly, the clades with higher evolutionary rates occupy a wider portion of morphospace compared with the more morphologically stable clades.more » « less
- 
            Abstract A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. At least five cases of convergent evolution of the crab‐like body plan (with a wide and flattened shape, and a bent abdomen) are known in decapod crustaceans, and have, for over 140 years, been known as “carcinization.” The repeated loss of this body plan has been identified as “decarcinization.” In reviewing the field, we offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the history of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab‐like body form.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
