skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on February 6, 2025

Title: Collective chemomechanical oscillations in active hydrogels

We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sub-nanoliter volumes of the Belousov-Zhabotinsky (BZ) reaction are sealed in microfluidic devices made from polydimethylsiloxane (PDMS). Bromine, which is a BZ reaction intermediate that participates in the inhibitory pathway of the reaction, is known to permeate into PDMS, and it has been suggested that PDMS and bromine can react ( J. Phys. Chem. A. 108, 2004, 1325-1332). We characterize the extent to which PDMS affects BZ oscillations by varying the volume of the PDMS surrounding the BZ reactors. We measure how the oscillation period varies with PDMS volume and compare with a theoretical reaction-diffusion model, concluding that bromine reacts with PDMS. We demonstrate that minimizing the amount of PDMS by making the samples as thin as possible maximizes the number of oscillations before the BZ reaction reaches equilibrium and ceases to oscillate. We also demonstrate that the deleterious effects of the PDMS-BZ interactions are somewhat mitigated by imposing constant chemical boundary conditions through using a light-sensitive catalyst, ruthenium, in combination with patterned illumination. Furthermore, we show that light can modulate the frequency and phase of the BZ oscillators contained in a PDMS matrix by 20-30%. 
    more » « less
  2. Abstract

    This work presents chemically stable and biodegradable hydrogel beads for the isolation of circulating tumor cells (CTCs) and circulating exosomes in liquid biopsy. The liquid biopsy hydrogel beads (LBbeads) consisting of alginate and poly(vinyl alcohol) hydrogels show both chemical stability and stimuli‐degradable characteristics. Unlike single‐component hydrogels, this hybrid form is not easily degraded by buffers or cell culture media while its degradable characteristic remains; thus, it is useful in bio‐applications requiring multi‐step processes with various reagents and lengthy incubation periods. We applied our platform to clinical samples for isolating two promising circulating biomarkers for a liquid biopsy, CTCs and exosomes, by conjugating the hydrogel surface with anti‐EpCAM and anti‐CD63 antibodies, respectively, thus achieving 37.4 CTCs and comparable amount of exosome recovery per 1 milliliter of blood. The results show easy device‐free isolation and retrieval of CTCs and exosomes, with recovered circulating biomarkers successfully analyzed by western blot analysis and fluorescence microscopy. We believe that this simple and versatile platform enables us to isolate prominent circulating biomarkers for clinical use in cancer diagnosis.

    more » « less
  3. Abstract

    Hydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads. Overall, bead properties were most affected by crosslinking pH. Beads produced at pH 3 and 4 were smaller and contained larger internal cavities, while optical coherence tomography suggested polymer cross-linking density was higher. Optical coherence elastography revealed PVA-SA-BS beads produced at pH 3 and 4 were stiffer than pH 5 beads. Dextran Blue release showed that pH 3-produced beads enabled higher diffusion rates and were more porous. Last, over a 28-day incubation, pH 3 and 4 beads lost more microspheres (as cell proxies) than beads produced at pH 5, while the latter released more polymer material. Overall, this study provides a path forward to tailor PVA-SA-BS hydrogel bead properties towards a broad range of applications, such as chemical, enzymatic, and microbially catalyzed (bio)-processes.

    more » « less
  4. Abstract

    Engineering complex tissues represents an extraordinary challenge and, to date, there have been few strategies developed that can easily recapitulate native‐like cell and biofactor gradients in 3D materials. This is true despite the fact that mimicry of these gradients may be essential for the functionality of engineered graft tissues. Here, a non‐traditional magnetics‐based approach is developed to predictably position naturally diamagnetic objects in 3D hydrogels. Rather than magnetizing the objects within the hydrogel, the magnetic susceptibility of the surrounding hydrogel precursor solution is enhanced. In this way, a range of diamagnetic objects (e.g., polystyrene beads, drug delivery microcapsules, and living cells) are patterned in response to a brief exposure to a magnetic field. Upon photo‐crosslinking the hydrogel precursor, object positioning is maintained, and the magnetic contrast agent diffuses out of the hydrogel, supporting long‐term construct viability. This approach is applied to engineer cartilage constructs with a depth‐dependent cellularity mirroring that of native tissue. These are thought to be the first results showing that magnetically unaltered cells can be magneto‐patterned in hydrogels and cultured to generate heterogeneous tissues. This work provides a foundation for the formation of opposing magnetic‐susceptibility‐based gradients within a single continuous material.

    more » « less
  5. null (Ed.)
    The growth of bacterial biofilms on implanted medical devices causes harmful infections and device failure. Biofilm development initiates when bacteria attach to and sense a surface. For the common nosocomial pathogen Pseudomonas aeruginosa and many others, the transition to the biofilm phenotype is controlled by the intracellular signal and second messenger cyclic-di-GMP (c-di-GMP). It is not known how biomedical materials might be adjusted to impede c-di-GMP signalling, and there are few extant methods for conducting such studies. Here, we develop such a method. We allowed P. aeruginosa to attach to the surfaces of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These bacteria contained a plasmid for a green fluorescent protein (GFP) reporter for c-di-GMP. We used laser-scanning confocal microscopy to measure the dynamics of the GFP reporter for 3 h, beginning 1 h after introducing bacteria to the hydrogel. We controlled for the effects of changes in bacterial metabolism using a promoterless plasmid for GFP, and for the effects of light passing through different hydrogels being differently attenuated by using fluorescent plastic beads as ‘standard candles’ for calibration. We demonstrate that this method can measure statistically significant differences in c-di-GMP signalling associated with different PEGDA gel types and with the surface-exposed protein PilY1. 
    more » « less