skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Norms on complex matrices induced by random vectors
Abstract We introduce a family of norms on the$$n \times n$$complex matrices. These norms arise from a probabilistic framework, and their construction and validation involve probability theory, partition combinatorics, and trace polynomials in noncommuting variables. As a consequence, we obtain a generalization of Hunter’s positivity theorem for the complete homogeneous symmetric polynomials.  more » « less
Award ID(s):
2054002
PAR ID:
10503831
Author(s) / Creator(s):
; ;
Publisher / Repository:
Canadian Math. Bull.
Date Published:
Journal Name:
Canadian Mathematical Bulletin
Volume:
66
Issue:
3
ISSN:
0008-4395
Page Range / eLocation ID:
808 to 826
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We give an explicit raising operator formula for the modified Macdonald polynomials$$\tilde {H}_{\mu }(X;q,t)$$, which follows from our recent formula for$$\nabla $$on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions$$\tilde {H}^{1,n}(X;q,t)$$that we call$$1,n$$-Macdonald polynomials, which reduce to a scalar multiple of$$\tilde {H}_{\mu }(X;q,t)$$when$$n=1$$. We conjecture that the coefficients of$$1,n$$-Macdonald polynomials in terms of Schur functions belong to$${\mathbb N}[q,t]$$, generalizing Macdonald positivity. 
    more » « less
  2. Abstract We prove a ‘Whitney’ presentation, and a ‘Coulomb branch’ presentation, for the torus equivariant quantum K theory of the Grassmann manifold$$\mathrm {Gr}(k;n)$$, inspired from physics, and stated in an earlier paper. The first presentation is obtained by quantum deforming the product of the Hirzebruch$$\lambda _y$$classes of the tautological bundles. In physics, the$$\lambda _y$$classes arise as certain Wilson line operators. The second presentation is obtained from the Coulomb branch equations involving the partial derivatives of a twisted superpotential from supersymmetric gauge theory. This is closest to a presentation obtained by Gorbounov and Korff, utilizing integrable systems techniques. Algebraically, we relate the Coulomb and Whitney presentations utilizing transition matrices from the (equivariant) Grothendieck polynomials to the (equivariant) complete homogeneous symmetric polynomials. Along the way, we calculate K-theoretic Gromov-Witten invariants of wedge powers of the tautological bundles on$$\mathrm {Gr}(k;n)$$, using the ‘quantum=classical’ statement. 
    more » « less
  3. Abstract Let$$\mathrm {R}$$be a real closed field. Given a closed and bounded semialgebraic set$$A \subset \mathrm {R}^n$$and semialgebraic continuous functions$$f,g:A \rightarrow \mathrm {R}$$such that$$f^{-1}(0) \subset g^{-1}(0)$$, there exist an integer$$N> 0$$and$$c \in \mathrm {R}$$such that the inequality (Łojasiewicz inequality)$$|g(x)|^N \le c \cdot |f(x)|$$holds for all$$x \in A$$. In this paper, we consider the case whenAis defined by a quantifier-free formula with atoms of the form$$P = 0, P>0, P \in \mathcal {P}$$for some finite subset of polynomials$$\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$$, and the graphs of$$f,g$$are also defined by quantifier-free formulas with atoms of the form$$Q = 0, Q>0, Q \in \mathcal {Q}$$, for some finite set$$\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$$. We prove that the Łojasiewicz exponent in this case is bounded by$$(8 d)^{2(n+7)}$$. Our bound depends ondandnbut is independent of the combinatorial parameters, namely the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. The previous best-known upper bound in this generality appeared inP. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991)and depended on the sum of degrees of the polynomials defining$$A,f,g$$and thus implicitly on the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)). 
    more » « less
  4. Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums. 
    more » « less
  5. Abstract Let$$\varphi _1,\ldots ,\varphi _r\in {\mathbb Z}[z_1,\ldots z_k]$$be integral linear combinations of elementary symmetric polynomials with$$\text {deg}(\varphi _j)=k_j\ (1\le j\le r)$$, where$$1\le k_1<\cdots . Subject to the condition$$k_1+\cdots +k_r\ge \tfrac {1}{2}k(k-~1)+2$$, we show that there is a paucity of nondiagonal solutions to the Diophantine system$$\varphi _j({\mathbf x})=\varphi _j({\mathbf y})\ (1\le j\le r)$$. 
    more » « less