Nature has examples of impressive surfaces and interfaces with diverse wettability stemming from superhydrophilicity to superhydrophobicity. The multiscale surface structures found in biological systems generally have high geometric complexity, which makes it challenging to replicate their characteristics, especially using traditional fabrication techniques. It is even more challenging to fabricate such complex microstructures with tunable wettability. In this paper, we propose a method to tune the wettability of a microscale surface by changing the geometrical parameters of embedded microstructures in the surface. By taking inspiration from an insect (springtails), we designed micropillar arrays with different roughness by adjusting geometric parameters such as reentrant angle, pitch distance, and the number of spikes and pillars. This study shows that, by changing geometrical parameters in microscale, the apparent contact angle, and hence the surface wettability can be calibrated. The microscale pillars were fabricated using a precise microdirect light processing (μDLP) three-dimensional (3D) printer. Different printing parameters were studied to optimize the geometric parameters to fabricate 3D hierarchical structures with high accuracy and resolution. The largest apparent contact angle in our experiments is up to 160 deg, with pillars of 0.17 mm height and 0.5 mm diameter, 55 deg reentrant angle, and a spacing of 0.36 mm between pillars. The lowest contact angle is ∼35 deg by reducing the pillar size and spacing. By controlling the size of different features of the pillar, pillar number, and layout of the mushroom-shaped micropillars, the wettability of the surface is possible to be tuned from a highly nonwetting liquid/material combination to highly wetting material. Such wettability tuning capability expands the design space for many biomedical and thermofluidic applications.
more » « less- Award ID(s):
- 2301462
- PAR ID:
- 10503863
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Micro- and Nano-Manufacturing
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2166-0468
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Laser powder bed fusion (LPBF) was utilized to create a series of aluminum alloy (i.e., AlSi10Mg) 5 mm-diameter support pillars with a fixed height of 5 mm containing varying filet angles and build orientations (i.e., 0 deg, 10 deg, 20 deg, 30 deg, 40 deg, 50 deg, and 60 deg from the normal surface) to determine surface roughness and water wettability effects. From experiments, anisotropic wetting was observed due in part to the surface heterogeneity created by the LPBF process. The powder-sourced AlSi10Mg alloy, typically hydrophobic, exhibited primarily hydrophilic behavior for build angles of 0 deg and 60 deg, a mix of hydrophobic and hydrophilic behavior at build angles of 10 deg and 20 deg, and hydrophobic behavior at 30 deg, 40 deg, and 50 deg build angles. Measured surface roughness, Ra, ranged from 5 to 36 µm and varied based on location. 3D-topography maps were generated, and arithmetic mean heights, Sa, of 15.52–21.71 µm were observed; the anisotropy of roughness altered the wetting behavior, thereby prompting some hydrophilic behavior. Build angles of 30 deg and 40 deg provided for the smoothest surfaces. A significantly rougher surface was found for the 50 deg build angle. This abnormally high roughness is attributed to the melt pool contact angle having maximal capillarity with the surrounding powder bed. In this study, the critical melt pool contact angle was near equal to the build angle, suggesting that a critical build angle exists, which gives rise to pronounced melt pool wetting behavior and increased surface roughness due to enhanced wicking followed by solidification.more » « less
-
A new approach is reported to fabricate micropillar arrays on transparent surfaces by employing the light‐induced self‐writing technique. A periodic array of microscale optical beams is transmitted through a thin film of photo‐crosslinking acrylate resin. Each beam undergoes self‐lensing associated to photopolymerization‐induced changes in the refractive index of the medium, which counters the beam's natural tendency to diverge over space. As a result, a microscale pillar grows along each beam's propagation path. Concurrent, parallel self‐writing of micropillars leads to the prototyping of micropillar‐based arrays, with the capability to precisely vary the pillar diameter and inter‐spacing. The arrays are spray coated with a thin layer of polytetrafluoroethylene (PTFE) nanoparticles to create large‐area superhydrophobic surfaces with water contact angles greater than 150° and low contact angle hysteresis. High transparency is achieved over the entire range of micropillar arrays explored. The arrays are also mechanically durable and robust against abrasion. This is a scalable, straightforward approach toward structure‐tunable micropillar arrays for functional surfaces and anti‐wetting applications.more » « less
-
Asymmetric microstructures are of particular interest to many technical fields. Such structures can produce anisotropic flow-fields, which, for example, can be used to control heat and mass transport processes. Anisotropic wicking structures can now be systematically engineered with unique micro-pillar geometries and spatial pillar-placement distributions. Such asymmetric wicking structure designs are of particular interest to the thermal management community due to need to cool heterogeneous materials with specific heat load configurations. In this study, asymmetric half-conical micropillars have been fabricated utilizing two-photon polymerization. Macroscopic characterization of anisotropic flow-field velocities is performed via high-speed videography. High-speed thin-film interferometry and microscopic side-angle videography are also used to characterize the microscale evolution of meniscus curvature during inter-pillar wicking. The wicking velocity is observed to be directly proportional to both the meniscus curvature and the cross-sectional area of the micro-pillars (normal to the flow). An anisotropic hemiwicking model is also described with comparisons to experimental data. The hemiwicking model predicts the macroscopic wicking behavior (within 20% or less) for the relatively broad range of pillar geometries and pillar spacing configurations. These anisotropic flow-field predictions can help engineers design the next-generation of micro-structured heat sinks, fluid-based sensors and chemical harvesting systems.more » « less
-
Abstract Wettability is one of the critical parameters affecting multiphase flow in porous media. The wettability is determined by the affinity of fluids to the rock surface, which varies due to factors such as mineral heterogeneity, roughness, ageing, and pore-space geometry. It is well known that wettability varies spatially in natural rocks, and it is still generally considered a constant parameter in pore-scale simulation studies. The accuracy of pore-scale simulation of multiphase flow in porous media is undermined by such inadequate wettability models. The advent of in situ visualization techniques, e.g. X-ray imaging and microtomography, enables us to characterize the spatial distribution of wetting more accurately. There are several approaches for such characterization. Most include the construction of a meshed surface of the interface surfaces in a segmented X-ray image and are known to have significant errors arising from insufficient resolution and surface-smoothing algorithms. This work presents a novel approach for spatial determination of wetting properties using local lattice-Boltzmann simulations. The scheme is computationally efficient as the segmented X-ray image is divided into subdomains before conducting the lattice-Boltzmann simulations, enabling fast simulations. To test the proposed method, it was applied to two synthetic cases with known wettability and three datasets of imaged fluid distributions. The wettability map was obtained for all samples using local lattice-Boltzmann calculations on trapped ganglia and optimization on surface affinity parameters. The results were quantitatively compared with a previously developed geometrical contact angle determination method. The two synthetic cases were used to validate the results of the developed workflow, as well as to compare the wettability results with the geometrical analysis method. It is shown that the developed workflow accurately characterizes the wetting state in the synthetic porous media with an acceptable uncertainty and is better to capture extreme wetting conditions. For the three datasets of imaged fluid distributions, our results show that the obtained contact angle distributions are consistent with the geometrical method. However, the obtained contact angle distributions tend to have a narrower span and are considered more realistic compared to the geometrical method. Finally, our results show the potential of the proposed scheme to efficiently obtain wettability maps of porous media using X-ray images of multiphase fluid distributions. The developed workflow can help for more accurate characterization of the wettability map in the porous media using limited experimental data, and hence more accurate digital rock analysis of multiphase flow in porous media.
-
Abstract Embedded pillar microstructures are an efficient approach for controlling and sculpting shear flow in a microchannel but have not yet demonstrated to be effective for deformability‐based cell separation and sorting. Although simple pillar configurations (lattice, line sequence) work well for size‐based separation of rigid particles, these have a low separation efficiency for circulating cells. The objective of this study is to optimize sequenced microstructures for separation of deformable cells. This is achieved by numerical analysis of pairwise cell migration in a microchannel with multiple pillars, where size, longitudinal spacing, and lateral location as well as the cell elasticity and size vary. This study reveals two basic pillar configurations optimized for deformability‐based separation: “duplet” that consists of two closely spaced pillars positioned far below the centerline and above the centerline halfway to the wall; and “triplet” composed of three widely spaced pillars located below, above and at the centerline, respectively. The duplet configuration is well suited for deformable cell separation in short channels, whereas the triplet or a combination of duplets and triplets provides even better separation in long channels. These optimized pillar microstructures can dramatically improve microfluidic methods for sorting and isolation of blood and rare circulating tumor cells.