skip to main content

Title: Prototyping of Superhydrophobic Surfaces from Structure-Tunable Micropillar Arrays Using Visible Light Photocuring
A new approach is reported to fabricate micropillar arrays on transparent surfaces by employing the light‐induced self‐writing technique. A periodic array of microscale optical beams is transmitted through a thin film of photo‐crosslinking acrylate resin. Each beam undergoes self‐lensing associated to photopolymerization‐induced changes in the refractive index of the medium, which counters the beam's natural tendency to diverge over space. As a result, a microscale pillar grows along each beam's propagation path. Concurrent, parallel self‐writing of micropillars leads to the prototyping of micropillar‐based arrays, with the capability to precisely vary the pillar diameter and inter‐spacing. The arrays are spray coated with a thin layer of polytetrafluoroethylene (PTFE) nanoparticles to create large‐area superhydrophobic surfaces with water contact angles greater than 150° and low contact angle hysteresis. High transparency is achieved over the entire range of micropillar arrays explored. The arrays are also mechanically durable and robust against abrasion. This is a scalable, straightforward approach toward structure‐tunable micropillar arrays for functional surfaces and anti‐wetting applications.
Authors:
; ; ;
Award ID(s):
1751621
Publication Date:
NSF-PAR ID:
10094182
Journal Name:
Advanced Engineering Materials
Page Range or eLocation-ID:
1801150
ISSN:
1438-1656
Sponsoring Org:
National Science Foundation
More Like this
  1. Microfiber optic array structures are fabricated and employed as an optical structure overlaying a front-contact silicon solar cell. The arrays are synthesized through light-induced self-writing in a photo-crosslinking acrylate resin, which produces periodically spaced, high-aspect-ratio, and vertically aligned tapered microfibers deposited on a transparent substrate. The structure is then positioned over and sealed onto the solar cell surface. Their fiber optic properties enable collection of non-normal incident light, allowing the structure to mitigate shading loss through the redirection of incident light away from contacts and toward the solar cell. Angle-averaged external quantum efficiency increases nominally by 1.61%, resulting in increases in short-circuit current density up to 1.13 mA/cm2. This work demonstrates a new approach to enhance light collection and conversion using a scalable, straightforward, light-based additive manufacturing process.
  2. Here presented are the properties and performance of a new metallo‐dielectric waveguide array structure as the encapsulation material for silicon solar cells. The arrays are produced through light‐induced self‐writing combined with in situ photochemical synthesis of silver nanoparticles. Each waveguide comprises a cylindrical core consisting of a high refractive index polymer and silver nanoparticles homogenously dispersed in its medium, all of which are surrounded by a low refractive index common cladding. The waveguide array‐based films are processed directly over a silicon solar cell. Arrays with systematically varied concentration of AgSbF6 as the salt precursor are explored. The structures are tested for their wide‐angle light capture capabilities, specifically toward enhanced conversion efficiency and current production of encapsulated solar cells. Observed are increases in the external quantum efficiency, especially at wide incident angles up to 70°, and nominal increases in the short circuit current density by 1 mA cm−2 (relative to an array without nanoparticles). Enhanced light collection is explained in terms of the beneficial effect of scattering by the nanoparticles along the waveguide cores. This is a promising approach toward solar cell encapsulants that aid to increase solar cell output over both the course of the day and year.
  3. Fibrillar adhesives composed of fibers with non-circular cross-sections and contacts, including squares and rectangles, offer advantages that include a larger real contact area when arranged in arrays and simplicity in fabrication. However, they typically have a lower adhesion strength compared to circular pillars due to a stress concentration at the corner of the non-circular contact. We investigate the adhesion of composite pillars with circular, square and rectangular cross-sections each consisting of a stiff pillar terminated by a thin compliant layer at the tip. Finite element mechanics modeling is used to assess differences in the stress distribution at the interface for the different geometries and the adhesion strength of different shape pillars is measured in experiments. The composite fibrillar structure results in a favorable stress distribution on the adhered interface that shifts the crack initiation site away from the edge for all of the cross-sectional contact shapes studied. The highest adhesion strength achieved among the square and rectangular composite pillars with various tip layer thicknesses is approximately 65 kPa. This is comparable to the highest strength measured for circular composite pillars and is about 6.5× higher than the adhesion strength of a homogenous square or rectangular pillar. The results suggest thatmore »a composite fibrillar adhesive structure with a local stress concentration at a corner can achieve comparable adhesion strength to a fibrillar structure without such local stress concentrations if the magnitude of the corner stress concentrations are sufficiently small such that failure does not initiate near the corners, and the magnitude of the peak interface stress away from the edge and the tip layer thickness are comparable.« less
  4. Abstract Extreme shear deformation is used for several material processing methods and is unavoidable in many engineering applications in which two surfaces are in relative motion against each other while in physical contact. The mechanistic understanding of the microstructural evolution of multi-phase metallic alloys under extreme shear deformation is still in its infancy. Here, we highlight the influence of shear deformation on the microstructural hierarchy and mechanical properties of a binary as-cast Al-4 at.% Si alloy. Shear-deformation-induced grain refinement, multiscale fragmentation of the eutectic Si-lamellae, and metastable solute saturated phases with distinctive defect structures led to a two-fold increase in the flow stresses determined by micropillar compression testing. These results highlight that shear deformation can achieve non-equilibrium microstructures with enhanced mechanical properties in Al–Si alloys. The experimental and computational insights obtained here are especially crucial for developing predictive models for microstructural evolution of metals under extreme shear deformation.
  5. Abstract

    Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers$${\boldsymbol{(}}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{7}}}{\boldsymbol{\lesssim }}{\bf{Re}}{\boldsymbol{\lesssim }}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{3}}}{\boldsymbol{)}}$$(107Re103). Fluid drag is conceptualized via a critical Reynolds number:$${\bf{Re}}{\boldsymbol{=}}\frac{{{\bf{v}}}_{{\bf{0}}}{{\bf{x}}}_{{\bf{0}}}}{{\boldsymbol{\nu }}}$$Re=v0x0ν, wherev0corresponds to the maximum wetting speed on a flat, dry surface andx0is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction withv0andx0measurements using Water$${\boldsymbol{(}}{{\bf{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{25}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{28}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$(v02m/s,25µmx028µm), viscous FC-70$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{0.3}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{18.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\boldsymbol{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{38.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$(v00.3m/s,18.6µmx038.6µm)and lower viscosity Ethanol$${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{1.2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{11.8}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{33.3}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$(v01.2m/s,11.8µmx033.3µm).