Abstract This paper studies the structure and stability of boundaries in noncollapsed $${{\,\mathrm{RCD}\,}}(K,N)$$ RCD ( K , N ) spaces, that is, metric-measure spaces $$(X,{\mathsf {d}},{\mathscr {H}}^N)$$ ( X , d , H N ) with Ricci curvature bounded below. Our main structural result is that the boundary $$\partial X$$ ∂ X is homeomorphic to a manifold away from a set of codimension 2, and is $$N-1$$ N - 1 rectifiable. Along the way, we show effective measure bounds on the boundary and its tubular neighborhoods. These results are new even for Gromov–Hausdorff limits $$(M_i^N,{\mathsf {d}}_{g_i},p_i) \rightarrow (X,{\mathsf {d}},p)$$ ( M i N , d g i , p i ) → ( X , d , p ) of smooth manifolds with boundary, and require new techniques beyond those needed to prove the analogous statements for the regular set, in particular when it comes to the manifold structure of the boundary $$\partial X$$ ∂ X . The key local result is an $$\varepsilon $$ ε -regularity theorem, which tells us that if a ball $$B_{2}(p)\subset X$$ B 2 ( p ) ⊂ X is sufficiently close to a half space $$B_{2}(0)\subset {\mathbb {R}}^N_+$$ B 2 ( 0 ) ⊂ R + N in the Gromov–Hausdorff sense, then $$B_1(p)$$ B 1 ( p ) is biHölder to an open set of $${\mathbb {R}}^N_+$$ R + N . In particular, $$\partial X$$ ∂ X is itself homeomorphic to $$B_1(0^{N-1})$$ B 1 ( 0 N - 1 ) near $$B_1(p)$$ B 1 ( p ) . Further, the boundary $$\partial X$$ ∂ X is $$N-1$$ N - 1 rectifiable and the boundary measure "Equation missing" is Ahlfors regular on $$B_1(p)$$ B 1 ( p ) with volume close to the Euclidean volume. Our second collection of results involve the stability of the boundary with respect to noncollapsed mGH convergence $$X_i\rightarrow X$$ X i → X . Specifically, we show a boundary volume convergence which tells us that the $$N-1$$ N - 1 Hausdorff measures on the boundaries converge "Equation missing" to the limit Hausdorff measure on $$\partial X$$ ∂ X . We will see that a consequence of this is that if the $$X_i$$ X i are boundary free then so is X .
more »
« less
An analogue of polynomially integrable bodies in even-dimensional spaces
A bounded domain $K \subset R^n$ is called polynomially integrable ifthe $(n-1)$-dimensional volume of the intersection $K$ with a hyperplane $\Pi$ polynomially depends on the distance from $\Pi$ to the origin. It was proved in \cite{KMY} that there are no such domains with smooth boundary if $n$ is even, and if $n$ is odd then the only polynomially integrable domains with smooth boundary are ellipsoids. In this article, we modify the notion of polynomial integrability for even $n$ and consider bodies for which the sectional volume function is a polynomial up to a factor which is the square root of a quadratic polynomial, or, equivalently, the Hilbert transform of this function is a polynomial. We prove that ellipsoids in even dimensions are the only convex infinitely smooth bodies satisfying this property.
more »
« less
- Award ID(s):
- 2054068
- PAR ID:
- 10503892
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of mathematical analysis and applications
- ISSN:
- 1096-0813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Let (M,g) be a compact n-dimensional Riemannian manifold without boundary, where the metric g is C^1-smooth. Consider the sequence of eigenfunctions u_k of the Laplace operator on M. Let B be a ball on M. We prove that the number of nodal domains of u_k that intersect B is not greater than C_1Volume(B)k+C_2k^{(n-1)/n}, where C_1 and C_2 depend on (M,g) only. The problem of local bounds for the volume and for the number of nodal domains was raised by Donnelly and Fefferman, who also proposed an idea how one can prove such bounds. We combine their idea with two ingredients: the recent sharp Remez type inequality for eigenfunctions and the Landis type growth lemma in narrow domains.more » « less
-
Abstract We study the regularity of the viscosity solution of the ‐Loewner–Nirenberg problem on a bounded smooth domain for . It was known that is locally Lipschitz in . We prove that, with being the distance function to and sufficiently small, is smooth in and the first derivatives of are Hölder continuous in . Moreover, we identify a boundary invariant which is a polynomial of the principal curvatures of and its covariant derivatives and vanishes if and only if is smooth in . Using a relation between the Schouten tensor of the ambient manifold and the mean curvature of a submanifold and related tools from geometric measure theory, we further prove that, when contains more than one connected components, is not differentiable in .
-
Abstract Using the concepts of mixed volumes and quermassintegrals of convex geometry, we derive an exact formula for the exclusion volume v ex ( K ) for a general convex body K that applies in any space dimension. While our main interests concern the rotationally-averaged exclusion volume of a convex body with respect to another convex body, we also describe some results for the exclusion volumes for convex bodies with the same orientation. We show that the sphere minimizes the dimensionless exclusion volume v ex ( K )/ v ( K ) among all convex bodies, whether randomly oriented or uniformly oriented, for any d , where v ( K ) is the volume of K . When the bodies have the same orientation, the simplex maximizes the dimensionless exclusion volume for any d with a large- d asymptotic scaling behavior of 2 2 d / d 3/2 , which is to be contrasted with the corresponding scaling of 2 d for the sphere. We present explicit formulas for quermassintegrals W 0 ( K ), …, W d ( K ) for many different nonspherical convex bodies, including cubes, parallelepipeds, regular simplices, cross-polytopes, cylinders, spherocylinders, ellipsoids as well as lower-dimensional bodies, such as hyperplates and line segments. These results are utilized to determine the rotationally-averaged exclusion volume v ex ( K ) for these convex-body shapes for dimensions 2 through 12. While the sphere is the shape possessing the minimal dimensionless exclusion volume, we show that, among the convex bodies considered that are sufficiently compact, the simplex possesses the maximal v ex ( K )/ v ( K ) with a scaling behavior of 2 1.6618… d . Subsequently, we apply these results to determine the corresponding second virial coefficient B 2 ( K ) of the aforementioned hard hyperparticles. Our results are also applied to compute estimates of the continuum percolation threshold η c derived previously by the authors for systems of identical overlapping convex bodies. We conjecture that overlapping spheres possess the maximal value of η c among all identical nonzero-volume convex overlapping bodies for d ⩾ 2, randomly or uniformly oriented, and that, among all identical, oriented nonzero-volume convex bodies, overlapping simplices have the minimal value of η c for d ⩾ 2.more » « less
-
null (Ed.)Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d .more » « less