skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2054068

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bounded domain $$K \subset R^n$$ is called polynomially integrable ifthe $(n-1)$-dimensional volume of the intersection $$K$$ with a hyperplane $$\Pi$$ polynomially depends on the distance from $$\Pi$$ to the origin. It was proved in \cite{KMY} that there are no such domains with smooth boundary if $$n$$ is even, and if $$n$$ is odd then the only polynomially integrable domains with smooth boundary are ellipsoids. In this article, we modify the notion of polynomial integrability for even $$n$$ and consider bodies for which the sectional volume function is a polynomial up to a factor which is the square root of a quadratic polynomial, or, equivalently, the Hilbert transform of this function is a polynomial. We prove that ellipsoids in even dimensions are the only convex infinitely smooth bodies satisfying this property. 
    more » « less
  2. Given two non-negative functions $$f$$ and $$g$$ such that the Radon transform of $$f$$ is pointwise smaller than the Radon transform of $$g$$, does it follow that the $L^p$-norm of $$f$$ is smaller than the $L^p$-norm of $$g$$ for a given $p>1?$ We consider this problem for the classical and spherical Radon transforms. In both cases we point out classes of functions for which the answer is affirmative, and show that in general the answer is negative if the functions do not belong to these classes. The results are in the spirit of the solution of the Busemann-Petty problem from convex geometry, and the classes of functions that we introduce generalize the class of intersection bodies introduced by Lutwak in 1988. We also deduce slicing inequalities that are related to the well-known Oberlin-Stein type estimates for the Radon transform. 
    more » « less
  3. Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $$K$$ and $$L$$ be star bodies in $${\mathbb R}^n,$$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $$K$$ and $$L$$, respectively, so that $$\|g\|_\infty =g(0)=1.$$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $$C$$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of $${\mathbb R}^n,$$ and $$d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$$ is the outer volume ratio distance from $$K$$ to the class of generalized $$k$$-intersection bodies in $${\mathbb R}^n.$$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem. 
    more » « less