This study examines Holocene phreatic overgrowths on speleothems (POS) found in brackish pools of Mallorca Island’s coastal caves. It traces the evolution of knowledge about these deposits, beginning with initial morphogenetic observations in the late 1970s. Recent research, involving 138 U-Th datings from eight caves, reconstructs the late Holocene sea-level history over the last 4,000 years. Findings include a sea level position at 25 cm below the pre-industrial times ‒occurring between 3.89 and 3.26 ka BP‒, followed by a rapid rise to current levels, remaining stable from 2.84 ka BP until the early 20th century. The paper also discusses glacial isostatic adjustment models, one of which is similar with the obtained POS data, linking sea-level rise to West Antarctica’s ice melt. Today, these crystallizations are partially submerged in the coastal phreatic waters, due to the gradual rise in sea level linked to modern (industrial) global warming; since 1900 the sea-level has risen by about 17.3 cm, with the rate of rise accelerating to 2.05 mm/year in the recent decades. 
                        more » 
                        « less   
                    
                            
                            Characterization of phreatic overgrowths on speleothems precipitated in the northern Adriatic during a sea-level stillstand at ca. 2.8 ka
                        
                    
    
            Abstract We examined a Late Holocene sea-level stillstand using phreatic overgrowths on speleothems (POS) recovered from Medvjeđa Špilja [Bear Cave] (northern Adriatic Sea) from −1.28 ± 0.15 m below present mean sea level. Different mineralogical analyses were performed to characterize the POS and better understand the mechanisms of their formation. Results reveal that the fibrous overgrowth is formed of calcite and that both the supporting soda straw and the overgrowth have very similar trace element compositions. This suggests that the drip-water and groundwater pool from which the POS formed have similar chemical compositions. Four subsamples were dated by means of uranium-series. We found that ca. 2800 years ago, the relative sea level was stable for about 300 years at a depth of approximately −1.28 ± 0.15 m below the current mean sea level. This finding roughly corresponds with the end of a relatively stable sea-level period, between 3250 and 2800 cal yr BP, previously noted in the southern Adriatic. Our research confirms the presence of POS in the Adriatic region and establishes the Medvjeđa Špilja pool as a conducive environment for calcite POS formation, which encourages further investigations at this study site. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2202683
- PAR ID:
- 10504060
- Date Published:
- Journal Name:
- Quaternary Research
- Volume:
- 118
- ISSN:
- 0033-5894
- Page Range / eLocation ID:
- 88 to 99
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.more » « less
- 
            Changes in global mean sea level (GMSL) during the late Cenozoic remain uncertain. We use a reconstruction of changes in δ18O of seawater to reconstruct GMSL since 4.5 million years ago (Ma) that accounts for temperature-driven changes in the δ18O of global ice sheets. Between 4.5 and 3 Ma, sea level highstands remained up to 20 m above present whereas the first lowstands below present suggest onset of Northern Hemisphere glaciation at 4 Ma. Intensification of global glaciation occurred from 3 Ma to 2.5 Ma, culminating in lowstands similar to the Last Glacial Maximum lowstand at 21,000 years ago and that reoccurred throughout much of the Pleistocene. We attribute the middle Pleistocene transition in ice sheet variability (1.2 Ma to 0.62 Ma) to modulation of 41-thousand-year (kyr) obliquity forcing by an increase in ~100-kyr CO2variability.more » « less
- 
            Abstract Application of novel proxies, such as the stable isotope compositions and noble gas concentrations of fossil drip water trapped as inclusions in stalagmites, have the potential to provide unique constraints on past hydroclimate states and surface temperatures. Geochemical analysis of inclusion waters, however, requires an understanding of the three‐dimensional spatial distribution of dominantly liquid‐ versus air‐filled inclusions in a given stalagmite. Here we couple neutron computed tomography and medium‐ to high‐resolution X‐ray computed tomography to map out the three‐dimensional calcite density and distribution of liquid‐ versus air‐filled inclusions within a Sierra Nevada stalagmite (ML‐1), which formed during the last deglaciation (18.5 to 11.7 ka). Comparison of coupled neutron computed tomography‐X‐ray computed tomography results with a time series of stalagmite calcite fabrics indicates that although highest density calcite contains abundant liquid (fluid)‐filled inclusions, calcite density and fabric overall were secondary controls on the liquid inclusion distribution (LID). Furthermore, a multistatistical evaluation of the stalagmite time series indicates a significant relationship at the multicentury‐ to millennial‐scale between LID and calcite δ18O and δ13C that suggests a potential link between LID and water availability to the cave.more » « less
- 
            Abstract While the Milky Way nuclear star cluster (MW NSC) has been studied extensively, how it formed is uncertain. Studies have shown it contains a solar and supersolar metallicity population that may have formed in situ, along with a subsolar-metallicity population that may have formed via mergers of globular clusters and dwarf galaxies. Stellar abundance measurements are critical to differentiate between formation scenarios. We present new measurements of [M/H] and α -element abundances [ α /Fe] of two subsolar-metallicity stars in the Galactic center. These observations were taken with the adaptive-optics-assisted high-resolution ( R = 24,000) spectrograph NIRSPEC in the K band (1.8–2.6 micron). These are the first α -element abundance measurements of subsolar-metallicity stars in the MW NSC. We measure [M/H] = − 0.59 ± 0.11, [ α /Fe] = 0.05 ± 0.15 and [M/H] = − 0.81 ± 0.12, [ α /Fe] = 0.15 ± 0.16 for the two stars at the Galactic center; the uncertainties are dominated by systematic uncertainties in the spectral templates. The stars have an [ α /Fe] in between the [ α /Fe] of globular clusters and dwarf galaxies at similar [M/H] values. Their abundances are very different than the bulk of the stars in the nuclear star cluster. These results indicate that the subsolar-metallicity population in the MW NSC likely originated from infalling dwarf galaxies or globular clusters and are unlikely to have formed in situ.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    