skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Student Persistence Factors for Engineering and Computing Undergraduates
The research and evaluation team of an S-STEM project at a large, research-intensive Southeastern public university conducted a cross-sectional survey as a first step to compare factors which may influence undergraduate student persistence in engineering and computing. All engineering and computing students were invited to participate in the survey, and 282 (10.4%) provided responses. The respondents included 15 high financial need students who were participating in the S-STEM program, of which 7 were first-year students and 8 were sophomores. The remaining 267 respondents were undergraduates ranging from first-year to seniors. Survey questions were adapted from previously developed instruments on self-efficacy, sense-of-belonging, identity, community involvement, and overall college experience. Additional questions related to stress levels, academic life, use and effectiveness of academic supports, and the impacts of COVID-19 on their college experiences. The team compared responses by level of academic progression, declared major, gender, and race/ethnicity. Student responses showed a variety of similarities and differences between subgroups. Overall, the students said that they often attended lectures (in-person or online) and came to class prepared. At the same time, students rated these activities as the least effective academic supports. On the other hand, the students rated working assigned or extra homework problems and studying for exams as their most effective activities. Consistently among the subgroups, the students said their community involvement and identity as developing engineers were relatively low while self-efficacy and team self-efficacy were seen as stronger personal skills. The students said they were highly stressed about their grades and academic success in general, and about finances and future careers. They reported feeling less stress about aspects such as living away from home and negotiating the university social scene. Students reported spending the most time preparing for class in their first year compared to students in later years. Female students (104 responses) reported higher levels of community involvement, engineering identity, and engagement in college life compared to male students (142 responses) while there was little gender-related difference in self-efficacy and sense of belonging. Levels of self-efficacy and team self-efficacy did not show large differences based on year in college. Interestingly, first-year students expressed the highest levels of engineering identity while senior students the lowest. Senior students reported the lowest community involvement, sense of belonging, and engineering identity compared to other students. Overall, students from different races self-reported the same levels of self-efficacy. Black/African American students reported the highest levels of community involvement, college life, and identity. There were no substantial differences in self-efficacy among the different engineering and computing majors. This study is a first step in analysis of the students’ input. In addition to surveying the students, the team also conducted interviews of the participating S-STEM students, and analysis of these interviews will provide greater depth to interpretation of the survey results. Overall, the research and evaluation team’s intention is to provide insight to the project’s leadership in how best to support the success of first-year engineering and computing students. https://peer.asee.org/student-persistence-factors-for-engineering-and-computing-undergraduates  more » « less
Award ID(s):
1930492
PAR ID:
10504080
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE
Date Published:
Journal Name:
ASEE Annual Conference
Format(s):
Medium: X
Location:
Baltimore, MD
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work in progress paper describes initial findings from a multi-cohort, longitudinal study designed to investigate engineering identity development and the role it plays in postsecondary engineering students’ commitment to the field and educational persistence. Although engineering identity is often considered an important contributing factor to educational and occupational persistence, there are few quantitative studies that directly examine this link. This study aims to address this gap and contribute to a better understanding of how we may foster engineering identity and help support students in their educational trajectories. To capture engineering identity, we use survey questions developed and validated in previous research to measure three scientific identity concepts: interest, recognition by self and others, and perceptions of competence and performance in engineering. Drawing on additional concepts in the literature, we also include measures of sense of belonging and commitment to an engineering career. In the spring semester 2019, a baseline survey for our first cohort was administered to 179 early career, engineering students across three public postsecondary Hispanic Serving Institutions (HSIs) in the Southwest United States. A little more than half of the respondents (N=93) were attending a traditional 4-year university while the remainder (N=86) were attending community college at the time of the survey. Almost 70% of the respondents identified as Latinx, approximately 30% identified as female, and about one-third reported that they were first generation college students. To examine whether students with higher engineering identity, sense of belonging and career commitment are more likely to persist into their second year and have higher college GPAs, institutional enrollment and achievement data were obtained for all survey participants in our first cohort. Logistic and ordinary least squares (OLS) regression were used to test for significant associations, controlling for demographic factors. Preliminary findings suggest that engineering students’ sense of belonging to the field may be especially important. 
    more » « less
  2. More women than men in the US graduate college, but women constitute only 16% of the engineering workforce [1]. Women frequently attribute their lack of persistence in engineering to a chilly academic climate [2]. Researchers have suggested that developing a robust engineering identity could moderate a climate effect and support improved retention and graduation of female engineers [2]. However, there is little empirical data on interrelationships among gender, perceived academic climate in engineering programs, engineering identity, and belonging to an engineering community. We drew on social identity theory and extant literature to develop four research questions: 1) Are there any differences between men and women regarding perceived academic climate, sense of belonging, and engineering identity? 2) Does academic climate predict engineering identity in the same way for women and men? 3)Does sense of belonging mediate the relationship between perceived academic climate and engineering identity? 4) Do engineering students who are women demonstrate different relationships among perceived climate, engineering identity, and belongingness from men? We used survey data from a multi-year NSF-funded project (Award # 1726268, #1726088, and #1725880/2033129) that incorporated experimental course-based interventions to build an inclusive curriculum. Surveys were administered at the beginning and end of the semester. We found that at the end of the semester women engineering undergraduates reported lower engineering identity though the initial engineering identity, perceived academic climate, and sense of belonging were the same for both men and women engineering undergraduates. Multiple regression analyses with 601 first-year engineer majors (21% female) indicated perceived climate and gender accounted for 48% of engineering identity variability. The interaction between perceived climate and gender on engineering identity was not statistically significant. Mediation analysis revealed that sense of belonging (b=0.42, 95% CI [0.30, 0.53]) mediated the relationship between perceived climate and engineering identity for both males and females. Sense of belonging was critical in engineering identity. Moderated mediation analysis indicated gender did not moderate the indirect effect of perceived climate on engineering identity through a sense of belonging. 
    more » « less
  3. Texas State University received an NSF S-STEM award to support two cohorts of talented, low-income engineering majors, with the first cohort starting their freshman year in Fall 2024. In addition to the scholarships awarded, this program aims to increase students’ engineering design self-efficacy, engineering identity, and improve persistence to graduation. The program includes unique strategies for achieving these goals, emphasizing mentoring and building a sense of community among participants. The SEED scholars were paired with a faculty mentor in their engineering major prior to their arrival on campus for their freshman year. This early contact was intended to open lines of communication with a faculty member, so the students felt they had a trustworthy source of information from someone who cared about them. As Texas State University has a high number of first-generation college students, there was an expectation that this program would likely attract a fair number of first-generation students. Without another family member’s experience about how to be a college student, having this faculty mentor gave these students a person who could help them answer questions and navigate the process leading to their first semester on campus. For instance, mentors were able to talk with students about dorm selection, mathematics course placement (including strategies for placing into a higher-level mathematics course), and what to expect in their engineering coursework. Student participation in an Engineering Living Learning Community (LLC) is another unique program feature to enhance community among the SEED scholars. A general description of the program and preliminary results from the students’ self-reported sense of belonging in engineering, engineering design self-efficacy, and engineering identity are presented in this paper. 
    more » « less
  4. Introduction: Chandler-Gilbert Community College (CGCC) in Arizona offers two-year degrees for diverse engineering disciplines and Artificial Intelligence and Machine Learning (AIM) studies. After their Associate’s degree, students transfer to Universities to complete their bachelor’s degree. Since the Fall of 2023, CGCC has nurtured students through the NSF S-STEM Grant initiative called Scholarships, Mentoring, and Professional Support to Improve Engineering & Artificial Intelligence Student Success at Community Colleges. This grant, also known as Reaching Engineering and Artificial Intelligence Career Heights (REACH), empowers students with scholarships, personalized mentoring, and industry-oriented activities. This study delves into the sense of belonging and academic integration of REACH recipients and their peers. Methodology: A survey was administered to students across six courses: engineering (3), AIM, chemistry, and physics. The courses were chosen because one REACH student was attending the same course, with the same instructor. The survey, adapted from Gurganus et al., was comprised of demographic data and 20 questions categorized into Sciences Identity, Expectations and Goals, Academic Integration, Sense of Belonging to the program, and Sense of Belonging to the campus. Unpaired t-tests were utilized to compare the responses of 5 REACH students with 58 of their peers, with significance set at p≤0.05. Results: Sixty-three students agreed and filled out the study, comprising 5 REACH students and 58 peers. Students are enrolled in AAS, Engineering Technology (1 REACH, 1 peers), AAS, Emphasis in Artificial Intelligence (2 REACH, 3 peers), AAS, Emphasis in Engineering (2 REACH, 30 peers), and 24 were not registered in one of those degrees. Twenty females, 41 males, and one binary student in their first to sixth semester at CGCC filled out the survey. Among those total students, 7 identified as Asian, 2 as black or African American, 11 as Hispanic or Latino, 39 as White, and 4 as Other. In the category of Sciences Identity, REACH students demonstrated a significantly stronger sense of belonging compared to their peers. Specifically, REACH recipients scored higher on three questions: "I have a strong sense of belonging to the community of engineering or AI" (REACH 4.40 vs Peers 3.47, p=0.017), "I feel like I belong in the field of engineering or AI" (REACH 4.60 vs Peers 3.71, p=0.032), and "The daily work of an engineer or AI scientist is appealing to me" (REACH 5.00 vs Peers 3.98, p=0.011). Furthermore, REACH students reported a significantly stronger sense of belonging to Chandler-Gilbert Community College compared to their peers (REACH 4.60 vs Peers 3.78, p=0.046). However, concerning academic integration, REACH students identified areas that require attention. Notably, they provided a lower score for the question "Understand what your professors expect of you academically" (REACH 1.20 vs Peers 2.00, p=0.025). REACH recipients also scored lower for: “Develop effective study skills”, “Adjust to the academic demands of college”, and “Manage your time effectively”. Academic Integration is the only category where REACH students scored less than their peers. Conclusion: The REACH initiative at CGCC has notably enhanced the sense of belonging and connection to the college among engineering and AIM students. While REACH students showed superior community affiliation, they identified areas for academic integration enhancement. A tailored workshop focusing on study skills and time management is planned for Spring 2024 to address these concerns. As the program expands in 2024, involving six more students, continued assessment and support mechanisms will foster a more inclusive and integrated academic environment. Acknowledgment: The authors would like to express their sincere thanks and gratitude to the National Science Foundation (NSF) for the Scholarship in Science, Technology, Engineering, and Mathematics (S-STEM) award No. 2220959. 
    more » « less
  5. Retention of students in Science, Technology, Engineering, and Mathematics (STEM) disciplines is a significant concern in higher education. Identity has been identified as an important correlate of academic success that may be important in a robust model of STEM retention. The engineering identity of “early career” university engineering students and its relation to GPA, self-efficacy, and a sense of belonging was examined. Self-efficacy and belonging were demonstrated to be domain dependent. A sense of belonging was much more strongly related to identity than either GPA or self-efficacy. A strong sense of belonging, specifically in the domain of the department of their major, was critical to a strong engineering identity. 
    more » « less