skip to main content


Title: Student Persistence Factors for Engineering and Computing Undergraduates
The research and evaluation team of an S-STEM project at a large, research-intensive Southeastern public university conducted a cross-sectional survey as a first step to compare factors which may influence undergraduate student persistence in engineering and computing. All engineering and computing students were invited to participate in the survey, and 282 (10.4%) provided responses. The respondents included 15 high financial need students who were participating in the S-STEM program, of which 7 were first-year students and 8 were sophomores. The remaining 267 respondents were undergraduates ranging from first-year to seniors. Survey questions were adapted from previously developed instruments on self-efficacy, sense-of-belonging, identity, community involvement, and overall college experience. Additional questions related to stress levels, academic life, use and effectiveness of academic supports, and the impacts of COVID-19 on their college experiences. The team compared responses by level of academic progression, declared major, gender, and race/ethnicity. Student responses showed a variety of similarities and differences between subgroups. Overall, the students said that they often attended lectures (in-person or online) and came to class prepared. At the same time, students rated these activities as the least effective academic supports. On the other hand, the students rated working assigned or extra homework problems and studying for exams as their most effective activities. Consistently among the subgroups, the students said their community involvement and identity as developing engineers were relatively low while self-efficacy and team self-efficacy were seen as stronger personal skills. The students said they were highly stressed about their grades and academic success in general, and about finances and future careers. They reported feeling less stress about aspects such as living away from home and negotiating the university social scene. Students reported spending the most time preparing for class in their first year compared to students in later years. Female students (104 responses) reported higher levels of community involvement, engineering identity, and engagement in college life compared to male students (142 responses) while there was little gender-related difference in self-efficacy and sense of belonging. Levels of self-efficacy and team self-efficacy did not show large differences based on year in college. Interestingly, first-year students expressed the highest levels of engineering identity while senior students the lowest. Senior students reported the lowest community involvement, sense of belonging, and engineering identity compared to other students. Overall, students from different races self-reported the same levels of self-efficacy. Black/African American students reported the highest levels of community involvement, college life, and identity. There were no substantial differences in self-efficacy among the different engineering and computing majors. This study is a first step in analysis of the students’ input. In addition to surveying the students, the team also conducted interviews of the participating S-STEM students, and analysis of these interviews will provide greater depth to interpretation of the survey results. Overall, the research and evaluation team’s intention is to provide insight to the project’s leadership in how best to support the success of first-year engineering and computing students. https://peer.asee.org/student-persistence-factors-for-engineering-and-computing-undergraduates  more » « less
Award ID(s):
1930492
NSF-PAR ID:
10504080
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE
Date Published:
Journal Name:
ASEE Annual Conference
Format(s):
Medium: X
Location:
Baltimore, MD
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work in progress paper describes initial findings from a multi-cohort, longitudinal study designed to investigate engineering identity development and the role it plays in postsecondary engineering students’ commitment to the field and educational persistence. Although engineering identity is often considered an important contributing factor to educational and occupational persistence, there are few quantitative studies that directly examine this link. This study aims to address this gap and contribute to a better understanding of how we may foster engineering identity and help support students in their educational trajectories. To capture engineering identity, we use survey questions developed and validated in previous research to measure three scientific identity concepts: interest, recognition by self and others, and perceptions of competence and performance in engineering. Drawing on additional concepts in the literature, we also include measures of sense of belonging and commitment to an engineering career. In the spring semester 2019, a baseline survey for our first cohort was administered to 179 early career, engineering students across three public postsecondary Hispanic Serving Institutions (HSIs) in the Southwest United States. A little more than half of the respondents (N=93) were attending a traditional 4-year university while the remainder (N=86) were attending community college at the time of the survey. Almost 70% of the respondents identified as Latinx, approximately 30% identified as female, and about one-third reported that they were first generation college students. To examine whether students with higher engineering identity, sense of belonging and career commitment are more likely to persist into their second year and have higher college GPAs, institutional enrollment and achievement data were obtained for all survey participants in our first cohort. Logistic and ordinary least squares (OLS) regression were used to test for significant associations, controlling for demographic factors. Preliminary findings suggest that engineering students’ sense of belonging to the field may be especially important. 
    more » « less
  2. More women than men in the US graduate college, but women constitute only 16% of the engineering workforce [1]. Women frequently attribute their lack of persistence in engineering to a chilly academic climate [2]. Researchers have suggested that developing a robust engineering identity could moderate a climate effect and support improved retention and graduation of female engineers [2]. However, there is little empirical data on interrelationships among gender, perceived academic climate in engineering programs, engineering identity, and belonging to an engineering community. We drew on social identity theory and extant literature to develop four research questions: 1) Are there any differences between men and women regarding perceived academic climate, sense of belonging, and engineering identity? 2) Does academic climate predict engineering identity in the same way for women and men? 3)Does sense of belonging mediate the relationship between perceived academic climate and engineering identity? 4) Do engineering students who are women demonstrate different relationships among perceived climate, engineering identity, and belongingness from men? We used survey data from a multi-year NSF-funded project (Award # 1726268, #1726088, and #1725880/2033129) that incorporated experimental course-based interventions to build an inclusive curriculum. Surveys were administered at the beginning and end of the semester. We found that at the end of the semester women engineering undergraduates reported lower engineering identity though the initial engineering identity, perceived academic climate, and sense of belonging were the same for both men and women engineering undergraduates. Multiple regression analyses with 601 first-year engineer majors (21% female) indicated perceived climate and gender accounted for 48% of engineering identity variability. The interaction between perceived climate and gender on engineering identity was not statistically significant. Mediation analysis revealed that sense of belonging (b=0.42, 95% CI [0.30, 0.53]) mediated the relationship between perceived climate and engineering identity for both males and females. Sense of belonging was critical in engineering identity. Moderated mediation analysis indicated gender did not moderate the indirect effect of perceived climate on engineering identity through a sense of belonging. 
    more » « less
  3. Wright College, an urban open-access community college, independently accredited within a larger community college system, is a federally recognized Hispanic-Serving Institution (HSI) with the largest community college enrollment of Hispanic students in its state. In 2018, Wright College received an inaugural National Science Foundation-Hispanic Serving Institution (NSF:HSI) research project grant “Building Capacity: Building Bridges into Engineering and Computer Science”. The project's overall goals are to increase underrepresented students pursuing an associate degree (AES) in engineering and computer science and streamline two transitions: high school to community college and 2-year to 4-year institutions. Through the grant, Wright College created a holistic and programmatic framework that examines and correlates engineering students' self-efficacy (the belief that students will succeed as engineers) and a sense of belonging with student success. The project focuses on Near-STEM ready students (students who need up to four semesters of math remediation before moving into Calculus 1). The project assesses qualitative and quantitative outcomes through surveys and case study interviews supplemented with retention, persistence, transfer, associate and bachelor's degree completion rates, and time for degree completion. The key research approach is to correlate student success data with self-efficacy and belonging measures. Outcomes and Impacts Three years into the project, Wright College Engineering and Computer Science Program was able to: • Develop and implement the Contextualized Summer Bridge with a total of 132 Near-STEM participants. One hundred twenty-seven (127) completed; 100% who completed the Bridge eliminated up to two years of math remediation, and 54% were directly placed in Calculus 1. All successful participants were placed in different engineering pathways, and 11 students completed Associate in Engineering Science (AES) and transferred after two years from the Bridge. • Increase enrollment by 940% (25 to 235 students) • Retain 93% of first-year students (Fall to fall retention). Seventy-five percent (75%) transferred after two years from initial enrollment. • Develop a holistic and programmatic approach for transfer model, thus increasing partnerships with 4-year transfer institutions resulting in the expansion of guaranteed/dual admissions programs with scholarships, paid research experience, dual advising, and students transferring as juniors. • Increase diversity at Wright College by bridging the academic gap for Near-STEM ready students. • Increase self-efficacy and belonging among all Program participants. • Increase institutionalized collaborations responsible for Wright College's new designation as the Center of Excellence for Engineering and Computer Science. • Increase enrollment, retention, and transfer of Hispanic students instrumental for Wright College Seal of Excelencia recognition. Lessons Learned The framework established during the first year of the grant overwhelmingly increased belonging and self-efficacy correlated with robust outcomes. However, the COVID-19 pandemic provided new challenges and opportunities in the second and third years of the grant. While adaptations were made to compensate for the negative impact of the pandemic, the face-to-face interactions were critical to support students’ entry into pathways and persistence within the Program. 
    more » « less
  4. Enrollment in computing at the college level has skyrocketed, and many institutions have responded by enacting competitive enrollment processes. However, little is known about the effects of enrollment policies on students' experiences. To identify relationships between those policies and students' experiences, we linked survey data from 1245 first-year students in 80 CS departments to a dataset of department policies. We found that competitive enrollment negatively predicts first-year students' perception of the computing department as welcoming, their sense of belonging, and their self-efficacy in computing. Both belonging and self-efficacy are known predictors of student retention in CS. In addition, these relationships are stronger for students without pre-college computing experience. Our classification of institutions as competitive is conservative, and false positives are likely. This biases our results and suggests that the negative relationships we found are an underestimation of the effects of competitive enrollment. 
    more » « less
  5. Retention of students in Science, Technology, Engineering, and Mathematics (STEM) disciplines is a significant concern in higher education. Identity has been identified as an important correlate of academic success that may be important in a robust model of STEM retention. The engineering identity of “early career” university engineering students and its relation to GPA, self-efficacy, and a sense of belonging was examined. Self-efficacy and belonging were demonstrated to be domain dependent. A sense of belonging was much more strongly related to identity than either GPA or self-efficacy. A strong sense of belonging, specifically in the domain of the department of their major, was critical to a strong engineering identity. 
    more » « less