skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On-Device Continual Learning With STT-Assisted-SOT MRAM Based In-Memory Computing
Due to the separate memory and computation units in traditional Von-Neumann architecture, massive data transfer dominates the overall computing system’s power and latency, known as the ‘Memory-Wall’ issue. Especially with ever-increasing deep learning-based AI model size and computing complexity, it becomes the bottleneck for state-of-the-art AI computing systems. To address this challenge, In-Memory Computing (IMC) based Neural Network accelerators have been widely investigated to support AI computing within memory. However, most of those works focus only on inference. The on-device training and continual learning have not been well explored yet. In this work, for the first time, we introduce on-device continual learning with STT-assisted-SOT (SAS) Magnetic Random Access Memory (MRAM) based IMC system. On the hardware side, we have fabricated a SAS-MRAM device prototype with 4 Magnetic Tunnel Junctions (MTJ, each at 100nm × 50nm) sharing a common heavy metal layer, achieving significantly improved memory writing and area efficiency compared to traditional SOT-MRAM. Next, we designed fully digital IMC circuits with our SAS-MRAM to support both neural network inference and on-device learning. To enable efficient on-device continual learning for new task data, we present an 8-bit integer (INT8) based continual learning algorithm that utilizes our SAS-MRAM IMC-supported bit-serial digital in-memory convolution operations to train a small parallel reprogramming Network (Rep-Net) while freezing the major backbone model. Extensive studies have been presented based on our fabricated SAS-MRAM device prototype, cross-layer device-circuit benchmarking and simulation, as well as the on-device continual learning system evaluation.  more » « less
Award ID(s):
2314591 2349802 2342726 2414603
PAR ID:
10504130
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
ISSN:
0278-0070
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the rapid advancement of DNNs, numerous Process-in-Memory (PIM) architectures based on various memory technologies (Non-Volatile (NVM)/Volatile Memory) have been developed to accelerate AI workloads. Magnetic Random Access Memory (MRAM) is highly promising among NVMs due to its zero standby leakage, fast write/read speeds, CMOS compatibility, and high memory density. However, existing MRAM technologies such as spin-transfer torque MRAM (STT-MRAM) and spin-orbit torque MRAM (SOT-MRAM), have inherent limitations. STT-MRAM faces high write current requirements, while SOT-MRAM introduces significant area overhead due to additional access transistors. The new STT-assisted-SOT (SAS) MRAM provides an area-efficient alternative by sharing one write access transistor for multiple magnetic tunnel junctions (MTJs). This work presents the first fully digital processing-in-SAS-MRAM system to enable 8-bit floating-point (FP8) neural network inference with an application in on-device session-based recommender system. A SAS-MRAM device prototype is fabricated with 4 MTJs sharing the same SOT metal line. The proposed SAS-MRAM-based PIM macro is designed in TSMC 28nm technology. It achieves 15.31 TOPS/W energy efficiency and 269 GOPS performance for FP8 operations at 700 MHz. Compared to state-of-the-art recommender systems for the same popular YooChoose dataset, it demonstrates a 86 ×, 1.8 ×, and 1.12 × higher energy efficiency than that of GPU, SRAM-PIM, and ReRAM-PIM, respectively. 
    more » « less
  2. In-Memory Computing (IMC) technology has been considered to be a promising approach to solve well-known memory-wall challenge for data intensive applications. In this paper, we are the first to propose MnM, a novel IMC system with innovative architecture/circuit designs for fast and efficient Min/Max searching computation in emerging Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM). Our proposed SOT-MRAM based in-memory logic circuits are specially optimized to perform parallel, one-cycle XNOR logic that are heavily used in the Min/Max searching-in-memory algorithm. Our novel in-memory XNOR circuit also has an overhead of just two transistors per row when compared to most prior methodologies which typically use multiple sense amplifiers or complex CMOS logic gates. We also design all other required peripheral circuits for implementing complete Min/Max searching-in-MRAM computation. Our cross-layer comprehensive experiments on Dijkstra's algorithm and other sorting algorithms in real word datasets show that our MnM could achieve significant performance improvement over CPUs, GPUs, and other competing IMC platforms based on RRAM/MRAM/DRAM. 
    more » « less
  3. In this work, we leverage the uni-polar switching behavior of Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) to develop an efficient digital Computing-in-Memory (CiM) platform named XOR-CiM. XOR-CiM converts typical MRAM sub-arrays to massively parallel computational cores with ultra-high bandwidth, greatly reducing energy consumption dealing with convolutional layers and accelerating X(N)OR-intensive Binary Neural Networks (BNNs) inference. With a similar inference accuracy to digital CiMs, XOR-CiM achieves ∼4.5× and 1.8× higher energy-efficiency and speed-up compared to the recent MRAM-based CiM platforms. 
    more » « less
  4. Abstract We present a novel deep neural network (DNN) training scheme and resistive RAM (RRAM) in-memory computing (IMC) hardware evaluation towards achieving high accuracy against RRAM device/array variations and enhanced robustness against adversarial input attacks. We present improved IMC inference accuracy results evaluated on state-of-the-art DNNs including ResNet-18, AlexNet, and VGG with binary, 2-bit, and 4-bit activation/weight precision for the CIFAR-10 dataset. These DNNs are evaluated with measured noise data obtained from three different RRAM-based IMC prototype chips. Across these various DNNs and IMC chip measurements, we show that our proposed hardware noise-aware DNN training consistently improves DNN inference accuracy for actual IMC hardware, up to 8% accuracy improvement for the CIFAR-10 dataset. We also analyze the impact of our proposed noise injection scheme on the adversarial robustness of ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight precision. Our results show up to 6% improvement in the robustness to black-box adversarial input attacks. 
    more » « less
  5. In this paper, we pave a novel way towards the concept of bit-wise In-Memory Convolution Engine (IMCE) that could implement the dominant convolution computation of Deep Convolutional Neural Networks (CNN) within memory. IMCE employs parallel computational memory sub-array as a fundamental unit based on our proposed Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) design. Then, we propose an accelerator system architecture based on IMCE to efficiently process low bit-width CNNs. This architecture can be leveraged to greatly reduce energy consumption dealing with convolutional layers and also accelerate CNN inference. The device to architecture co-simulation results show that the proposed system architecture can process low bit-width AlexNet on ImageNet data-set favorably with 785.25μJ/img, which consumes ~3× less energy than that of recent RRAM based counterpart. Besides, the chip area is ~4× smaller. 
    more » « less