skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: XOR-CiM: An Efficient Computing-in-SOT-MRAM Design for Binary Neural Network Acceleration
In this work, we leverage the uni-polar switching behavior of Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) to develop an efficient digital Computing-in-Memory (CiM) platform named XOR-CiM. XOR-CiM converts typical MRAM sub-arrays to massively parallel computational cores with ultra-high bandwidth, greatly reducing energy consumption dealing with convolutional layers and accelerating X(N)OR-intensive Binary Neural Networks (BNNs) inference. With a similar inference accuracy to digital CiMs, XOR-CiM achieves ∼4.5× and 1.8× higher energy-efficiency and speed-up compared to the recent MRAM-based CiM platforms.  more » « less
Award ID(s):
2216772 2228028 2216773
PAR ID:
10426823
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2023 24th International Symposium on Quality Electronic Design (ISQED)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The constant drive to achieve higher performance in deep neural networks (DNNs) has led to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor‐based compute‐in‐memory (CIM) modules can perform vector‐matrix multiplication (VMM) in place and in parallel, and have shown great promises in DNN inference applications. However, CIM‐based model training faces challenges due to non‐linear weight updates, device variations, and low‐precision. In this work, a mixed‐precision training scheme is experimentally implemented to mitigate these effects using a bulk‐switching memristor‐based CIM module. Low‐precision CIM modules are used to accelerate the expensive VMM operations, with high‐precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre‐defined threshold. The proposed scheme is implemented with a system‐onchip of fully integrated analog CIM modules and digital sub‐systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and verifies that CIM modules can enable efficient mix‐precision DNN training with accuracy comparable to full‐precision software‐trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re‐training. 
    more » « less
  2. With the rapid advancement of DNNs, numerous Process-in-Memory (PIM) architectures based on various memory technologies (Non-Volatile (NVM)/Volatile Memory) have been developed to accelerate AI workloads. Magnetic Random Access Memory (MRAM) is highly promising among NVMs due to its zero standby leakage, fast write/read speeds, CMOS compatibility, and high memory density. However, existing MRAM technologies such as spin-transfer torque MRAM (STT-MRAM) and spin-orbit torque MRAM (SOT-MRAM), have inherent limitations. STT-MRAM faces high write current requirements, while SOT-MRAM introduces significant area overhead due to additional access transistors. The new STT-assisted-SOT (SAS) MRAM provides an area-efficient alternative by sharing one write access transistor for multiple magnetic tunnel junctions (MTJs). This work presents the first fully digital processing-in-SAS-MRAM system to enable 8-bit floating-point (FP8) neural network inference with an application in on-device session-based recommender system. A SAS-MRAM device prototype is fabricated with 4 MTJs sharing the same SOT metal line. The proposed SAS-MRAM-based PIM macro is designed in TSMC 28nm technology. It achieves 15.31 TOPS/W energy efficiency and 269 GOPS performance for FP8 operations at 700 MHz. Compared to state-of-the-art recommender systems for the same popular YooChoose dataset, it demonstrates a 86 ×, 1.8 ×, and 1.12 × higher energy efficiency than that of GPU, SRAM-PIM, and ReRAM-PIM, respectively. 
    more » « less
  3. Due to the separate memory and computation units in traditional Von-Neumann architecture, massive data transfer dominates the overall computing system’s power and latency, known as the ‘Memory-Wall’ issue. Especially with ever-increasing deep learning-based AI model size and computing complexity, it becomes the bottleneck for state-of-the-art AI computing systems. To address this challenge, In-Memory Computing (IMC) based Neural Network accelerators have been widely investigated to support AI computing within memory. However, most of those works focus only on inference. The on-device training and continual learning have not been well explored yet. In this work, for the first time, we introduce on-device continual learning with STT-assisted-SOT (SAS) Magnetic Random Access Memory (MRAM) based IMC system. On the hardware side, we have fabricated a SAS-MRAM device prototype with 4 Magnetic Tunnel Junctions (MTJ, each at 100nm × 50nm) sharing a common heavy metal layer, achieving significantly improved memory writing and area efficiency compared to traditional SOT-MRAM. Next, we designed fully digital IMC circuits with our SAS-MRAM to support both neural network inference and on-device learning. To enable efficient on-device continual learning for new task data, we present an 8-bit integer (INT8) based continual learning algorithm that utilizes our SAS-MRAM IMC-supported bit-serial digital in-memory convolution operations to train a small parallel reprogramming Network (Rep-Net) while freezing the major backbone model. Extensive studies have been presented based on our fabricated SAS-MRAM device prototype, cross-layer device-circuit benchmarking and simulation, as well as the on-device continual learning system evaluation. 
    more » « less
  4. In this paper we propose a Highly Flexible InMemory (HieIM) computing platform using STT MRAM, which can be leveraged to implement Boolean logic functions without sacrificing memory functionality. It could pre-process data within memory to further reduce power hungry long distance communication between memory and processing units as in Von-Neumann computing system. HieIM can implement all the Boolean logic functions (AND/NAND, OR/NOR, XOR/XNOR) between any two cells in the same memory array, thus overcoming the `operand locality' problem in contemporary in-memory computing platform designs. To investigate the performance of HieIM, we test in-memory bulk bit-wise Boolean logic operations using different vector datasets, which shows ~ 8x energy saving and ~ 5x speedup compared to recent DRAM based in-memory computing platform. We further implement an in-memory data encryption engine design based on HieIM as another case study. With AES algorithm, it shows 51.5% and 68.9% lower energy consumption compared to CMOS-ASIC and CMOL based implementations, respectively. 
    more » « less
  5. Abstract Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory 2–5 . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware 6–17 , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST 18 and 85.7 percent on CIFAR-10 19 image classification, 84.7-percent accuracy on Google speech command recognition 20 , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. 
    more » « less