skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generalized Nash equilibrium models for asymmetric, non-cooperative games on line graphs: Application to water resource systems
This paper investigates the game theory of resource-allocation situations where the ‘‘first come, first serve’’ heuristic creates inequitable, asymmetric benefits to the players. Specifically, this problem is formulated as a Generalized Nash Equilibrium Model where the players are arranged sequentially along a directed line graph. The goal of the model is to reduce the asymmetric benefits among the players using a policy instrument. It serves as a more realistic, alternative approach to the line-graph models considered in the cooperative game-theoretic literature. An application-oriented formulation is also developed for water resource systems. The players in this model are utilities who withdraw water and are arranged along a river basin from upstream to downstream. This model is applied to a stylized, three-node model as well as a test bed in the Duck River Basin in Tennessee, USA. Based on the results, a non-cooperative, water-release market can be an acceptable policy instrument according to metrics traditionally used in cooperative game theory.  more » « less
Award ID(s):
2113891
PAR ID:
10504215
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computers & Operations Research
Volume:
154
Issue:
C
ISSN:
0305-0548
Page Range / eLocation ID:
106194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. arXiv:2402.05300v2 (Ed.)
    This paper considers a multi-player resource-sharing game with a fair reward allocation model. Multiple players choose from a collection of resources. Each resource brings a random reward equally divided among the players who choose it. We consider two settings. The first setting is a one-slot game where the mean rewards of the resources are known to all the players, and the objective of player 1 is to maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions. These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online setting, where the game is played over a finite time horizon, where the mean rewards are unknown to the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the worst-case regret of the first player using the feedback received. 
    more » « less
  2. Developing autonomous agents that can strategize and cooperate with humans under information asymmetry is challenging without effective communication in natural language. We introduce a shared-control game, where two players collectively control a token in alternating turns to achieve a common objective under incomplete information. We formulate a policy synthesis problem for an autonomous agent in this game with a human as the other player. To solve this problem, we propose a communication-based approach comprising a language module and a planning module. The language module translates natural language messages into and from a finite set of flags, a compact representation defined to capture player intents. The planning module leverages these flags to compute a policy using an asymmetric information-set Monte Carlo tree search with flag exchange algorithm we present. We evaluate the effectiveness of this approach in a testbed based on Gnomes at Night, a search-and-find maze board game. Results of human subject experiments show that communication narrows the information gap between players and enhances human-agent cooperation efficiency with fewer turns. 
    more » « less
  3. This dissertation provides a foundation for understanding how water governance has changed over time, how watershed positionality and governance level shape the goals and strategies as well as the coordination of organizations actively involved in water issues, and how local, rural stakeholders changed legacy groundwater management. The first study examines the evolution of Colorado River Basin water management over the last century to understand how changing environmental conditions and path dependency have shaped past water management changes. Improved understanding can help inform policy responses to current challenges. The combined spatial, temporal, and network analyses show that Colorado River Basin water governance has been influenced by 100 years of rules that are layered and still in place. The rules have evolved water management strategies over time, shifted the emphasis of water management actions, and changed the distribution of authority across actions and rule levels. The second study explores how water management coordination varies based on governance level and physical location in the watershed. Additionally, this study analyzes how the level of governance and hydrologic position of organizations shape goals, strategies, and beliefs about the risks and benefits of changes to Colorado River Basin water management factors. The content and cluster analysis found the level of governance more influential than the hydrologic position and that coalitions can rearrange in a short period of time based on how the issue is framed. The last study unveils how local, rural residents were able to change legacy groundwater management through a process that began with a social movement to a ballot initiative to public input on groundwater management via a management goal-setting policy process in the Douglas Groundwater Basin in Arizona. The framing analysis shows that the public can identify problems and solutions, including paired solutions, but residents do not know whom to identify as being responsible for addressing water management in the basin. 
    more » « less
  4. Abstract Around the world, water rights systems govern the allocation of water to a multitude of users. Such systems primarily come into play during times of drought, when some users have to be shorted. Yet their management during times of excess can have implications for subsequent drought impacts. This is evident in the State of Colorado, where under “free river conditions” in which there is sufficient water to satisfy all water rights, anyone—including individuals lacking water rights—can divert as much as they want, unconstrained by the limit of their water right. Here, we estimate the amount of excess water used under such conditions within Division five of the Upper Colorado River Basin in the State of Colorado. Comparing the daily water withdrawals of diversion structures along the Colorado River and its tributaries with their (daily) water rights, we find that in 2017, 339 structures report days with excess withdrawals, amounting to 108 million cubic meters (87,577 acer feet). While such excess withdrawal is legal in Colorado, we argue that the free river condition is an antiquated rule that will make much needed reform of water allocation within the water‐stressed Colorado River Basin more difficult. We offer policy suggestions to address it. 
    more » « less
  5. An atomic routing game is a multiplayer game on a directed graph. Each player in the game chooses a path—a sequence of links that connect its origin node to its destination node—with the lowest cost, where the cost of each link is a function of all players’ choices. We develop a novel numerical method to design the link cost function in atomic routing games such that the players’ choices at the Nash equilibrium minimize a given smooth performance function. This method first approximates the nonsmooth Nash equilibrium conditions with smooth ones, then iteratively improves the link cost function via implicit differentiation. We demonstrate the application of this method to atomic routing games that model noncooperative agents navigating in grid worlds. 
    more » « less